Evaluation of the Aerial Biomass of Three Sahelian Species in the Ferlo (North Senegal): Acacia tortilis (Forsk.) Hayn essp. Raddiana (Savi) Brenan, Acacia senegal (L.) Willd and Balanites aegyptiaca (L.) Del
In a context of climate change characterized by rising temperatures, increased greenhouse gases and frequent droughts, the Sahel is presented as one of the most vulnerable areas to the adverse effects of climate change. The Sahel is presented as one of the most vulnerable areas to the adverse effects of climate change. The objective of this study is to assess the above-ground biomass and carbon stock of three Sahelian species: Acacia raddiana tortilis (Forsk.) hayne ssp. raddiana (savi) Brenan, Acacia senegal (L.) Willd and Balanites aegyptiaca (L.). The study was carried out in northern Senegal commonly known as Ferlo. Biomasses of the populations of the three target species were first assessed by harvesting the entire epigenetic part of the species and then modelled by correlation using dendrometric parameters measured on each individual of the sample. Two models, mono-specific and multi-species, were used. The results obtained showed that the diameter at breast height (x) and the parameter best correlated to the epigeal biomass (y). The dry biomass of woody plants was 31.4 ± 15.2 kg/tree for B. aegyptiaca, 30.6 ± 13.2 kg/tree for A. senegal and 26.2 ± 11.1 kg/tree for A. raddiana; i.e. carbon equivalents of 14.75 - 14.38 - 12.31 kg/tree respectively. The amount of carbon contained in the above-ground woody biomass is estimated at 4.48 t/ha. The carbon equivalent, atmospheric CO2 is estimated at 16.44 tons of CO2/ha and based on the actual density of Ferlo (108.08 ± 49.79 ind/ha) the sequestered carbon of the area is estimated at 1777.008 tons of CO2. The comparison between the models developed in this study and the multispecific or mono-specific models from the literature showed substantial differences. This study contributes to a better understanding of the contribution of Sahelian woody species to carbon sequestration and the results could be used in the framework of adaptation to climate change.
References
[1]
Sarr, M.A. (2009) Recent Evolution of Climate and Vegetation in Senegal (Case of Ferlo). Doctoral Thesis, University Jean Moulin, Lyon, 410 p.
[2]
Diallo, A., Faye, M.N. and Guisse, A. (2011) Structure of Woody Stands in Acacia senegal (L.) Willd Plantations in the Dahra Zone (Ferlo, Senegal). Revue D’écologie, 66, 415-427.. https://hdl.handle.net/2042/55893
[3]
Diouf, M. (2003) Basic Characteristics of the Leaves of a Sahelian Woody Species: Acacia tortilis (Forsk) Hyane, Variation According to the Topographic Microsites of Ferlo (Nord-Sénégal). Thesis, Université Cheikh Anta Diop de Dakar, Dakar, 103 p.
[4]
Bakhoum, A. (2013) Dynamics of Forage Resources: Indicator of Resilience of Community Rangelands from Téssékéré to Ferlo (North-Senegal). Unique Doctoral Thesis in Biology, Animal Productions and Pathologies, Option Pastoral Ecology, FST-UCAD, 115 p.
[5]
Ndiaye, O. (2015) Determinants of the Dynamics of the Vegetation of a Grazed Environment in the Sahelian Region of Senegal. Doctoral Thesis, Université Cheikh Anta Diop de Dakar, Dakar, 138 p.
[6]
Brenan, H. and Kessler, J.J. (1995) Woody Plants in Qgro-Ecosystem of Semi-Arid Region, with an Emphasis on the Sahelian Countries. Springer-Verlag, Berlin-Heidelberg, 340 p.
[7]
IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Editorial Team, Pachauri RK and Reisinger A. IPCC, Geneva, 103 p.
[8]
Poupon, H. (1979) Structure and Dynamics of the Woody Stratum of a Sahelian Steppe in Northern Senegal. Natural Sciences, Doctoral Thesis, University of Paris Sud, ORSAY. ORSTOM Works and Document, Paris, 351 p.
[9]
Woomer, P.L., Toure, A. and Sall, M. (2004) Carbon Stocks in Senegal’s Sahel Transition Zone. Journal of Arid Environments, 59, 499-510. https://doi.org/10.1016/j.jaridenv.2004.03.027
[10]
Tschakert, P., Khouma, M. and Sene, M. (2004) Biophysical Potential for Soil Carbon Sequestration in Agricultural Systems of the Old Peanut Basin of Senegal. Journal of Arid Environments, 59, 511-533. https://doi.org/10.1016/j.jaridenv.2004.03.026
[11]
Liu, S., Kairé, M., Wood, E., Diallo, O. and Tieszen, L. (2004) Impacts of Land Use and Climate Change on Carbon Dynamics in South-Central Senegal. Journal of Arid Environments, 59, 583-604. https://doi.org/10.1016/j.jaridenv.2004.03.023
[12]
Mbow, C. (2009) Potential and Dynamics of Carbon Stocks in the Sudanese and Sudanese-Guinean Savannas of Senegal. UCAD State Doctorate Thesis in Sciences, Cheikh Anta Diop University (UCAD), Dakar, 319 p.
[13]
Thiam, S. (2011) Development of an Allometric Model on Acacia senegal (L.) Wild to Improve the Woody Carbon Analysis of the Great Green Wall (GMV) in Senegal. DEA Dissertation UCAD, Cheikh Anta Diop University (UCAD), Dakar, 69 p.
[14]
Henry, M., Picard, N., Trotta, C., Manlay, R., Valentini, R., Bernoux, M. and Saint-Andre, L. (2011) Estimating Tree Biomass of Sub-Saharan African Forests: A Review of Available Allometric Equations. Silva Fennica, 45, 477-569. https://www.metla.fi/silvafennica/full/sf45/s453B477 https://doi.org/10.14214/sf.38
[15]
Bohlman, S. and O’brien, S. (2006) Allometry, Adult Stature and Regeneration Requirement of 65 Tree Species on Barro Colorado Island, Panama. Journal of Tropical Ecology, 22, 123-136. https://doi.org/10.1017/S0266467405003019
[16]
Dietze, M.C., Wolosin, M.S. and Clark, J.S. (2008) Capturing Diversity and Interspecific Variability in Allometries: A Hierarchical Approach. Forest Ecology and Management, 256, 1939-1948. https://doi.org/10.1016/j.foreco.2008.07.034
[17]
Miehe, S., Kluge, J., Wehrden, H. and Retzer, V. (2010) Long-Term Degradation of Sahelian Rangeland Detected by 27 Years of Field Study in Senegal. Journal of Applied Ecology, 47, 692-700. https://doi.org/10.1111/j.1365-2664.2010.01815.x
[18]
Akpo, L.E. and Grouzis, M. (1996) Influence of the Cover on the Regeneration of Some Woody Sahelian Species (North-Senegal-West Africa). Webbia, 50, 247-263. https://doi.org/10.1080/00837792.1996.10670605
[19]
Ndiaye, O. (2013) Characteristics of the Soils, Flora and Vegetation of Ferlo, Senegal. Doctoral Thesis in Ecology and Agroforestry, EDSEV, UCAD-FST.
[20]
Leprun, J.C. (1971) New Observations on the Fixed Sand Dune Formations of the Northwestern Ferlo (Senegal). Bulletin de Liaison—ASEQUA, 31, 69-78. https://www.documentation.ird.fr/hor/fdi:05414
[21]
Dagnelie, P. (1998) Theoretical and Applied Statistics: One-Dimensional and Two-Dimensional Statistical Inference. De Boeck & Larcier, Paris, Brussels, 181-186.
[22]
Picard, N., Henry, M., Mortier, F., Trotta, C. and Saint-Andre, L. (2012) Using Bayesian Model Averaging to Predict Tree Aboveground Biomass. Forest Science, 58, 15-23. https://doi.org/10.5849/forsci.10-083
[23]
Talla, R., Sagna, M., Diallo, M.D., Diallo, A., Ndiaye, D., Sarr, O. and Guisse, A. (2020) Development of Allometric Models for Estimating the Biomass of Sclerocarya birrea (A. Rich) Hoscht and Boscia senegalensis (Pers.) Lam. ex Poir. Open Journal of Ecology, 10, 571-584. https://doi.org/10.4236/oje.2020.108035
[24]
Brown, S. (1997) Estimating Biomass and Biomass Change of Tropical Forests: A Primer. FAO Forestry Paper, Rome, 134, 55 p.
[25]
Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson, B.W., Ogawa, H., Puig, H., Rierab, B. and Yamakura, T. (2005) Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests. Oecologia, 145, 87-99. https://doi.org/10.1007/s00442-005-0100-x
[26]
Brown, I.F., Martinelli, L.A., Thomas, W.W., Moreira, M.Z., Victoria, R.A. and Ferreira, C.A.C. (1995) Uncertainty in the Biomass of Amazonian Forests: An Example from Rondônia, Brazil. Forest Ecology and Management, 75, 175-189. https://doi.org/10.1016/0378-1127(94)03512-U
[27]
Peltier, R., Forkong, C.N., Mama, F., Ntoupka, M., Manlay, R., Henry, M. and Morillon, V. (2007) évaluation du stock de carbone et de la productivité en bois d’un parc à karités du Nord Cameroun. Revue Bois et Forêts des Tropiques, 294, 12.
[28]
Larwanou, M., Yemshaw, Y. and Saâdou, M. (2010) Prediction Models for Estimating Foliar and Fruit Dry Biomasses of Five Savannah Tree Species in the West African Sahel. International Journal of Biological and Chemical Sciences, 4, 2245-2256. https://doi.org/10.4314/ijbcs.v4i6.64943
[29]
Ebuy, J., Lokombé, Dimandja, J.P., Ponette, Q., Sonwa, D. and Picard, N. (2011) Biomass Equation for Predicting Tree Aboveground Biomass at Yangambi, RDC. Journal of Tropical Forest Science, 23, 125-132.
[30]
Shinozaki, K., Yoda, K., Hozumi, K. and Kira, T. (1964a) A Quantitative Analysis of Plant Form—The Pipe Model Theory. I. Basic Analyses. Japanese Journal of Ecology, 14, 97-104.
[31]
Shinozaki, K., Yoda, K., Hozumi, K. and Kira, T. (1964b) A Quantitative Analysis of Plant Form—The Pipe Model Theory. II. Further Evidence of the Theory and Its Application on Forest Ecology. Japanese Journal of Ecology, 14, 133-139.
[32]
Thornley, J.H. (1972) A Balanced Quantitative Model for Root: Shoot Ratios in Vegetative Plants. Annals of Botany, 36, 431-441. https://doi.org/10.1093/oxfordjournals.aob.a084602
[33]
Bloom, A.J., Chapin, F.S. and Mooney, H.A. (1985) Resource Limitation in Plants—An Economic Analogy. Annual Review of Ecology and Systematics, 16, 363-392. https://www.annualreviews.org https://doi.org/10.1146/annurev.es.16.110185.002051
[34]
West, G.B., Brown, J.H. and Enquist, B.J. (1999) A General Model for the Structure and Allometry of Plant Vascular Systems. Nature, 400, 664-667. https://doi.org/10.1038/23251
[35]
Nicolini, é., Chanson, B. and Bonne, F. (2001) Stem Growth and Epicormic Branch Formation in Understorey Beech Trees (Fagus sylvatica L.). Annals of Botany, 87, 737-750. https://doi.org/10.1006/anbo.2001.1398
[36]
Savage, V.M., Deeds, E.J. and Fontana, W. (2008) Sizing Up Allometric Scaling Theory. PLoS Computational Biology, 4, e1000171. https://doi.org/10.1371/journal.pcbi.1000171
[37]
Genet, A., Wernsdörfer, H., Jonard, M., Pretzsch, H., Rauch, M., Ponette, Q., Nys, C., Legout, A., Ranger, J., Vallet, P. and Saint-Andre, L. (2011) Ontogeny Partly Explains the Apparent Heterogeneity of Published Biomass Equations for Fagus sylvatica in Central Europe. Forest Ecology and Management, 261, 1188-1202. https://doi.org/10.1016/j.foreco.2010.12.034
[38]
Gourlet-Fleury, S., Rossi, V., Rejou-Mechain, M., Freycon, V., Fayolle, A., Saint-Andre, L., Cornu, G., Gerard, J., Sarrailh, J.M., Flores, O., Baya, F., Billand, A., Fauvet, N., Gally, M., Henry, M., Hubert, D., Pasquier, A. and Picard, N. (2011) Environmental Filtering of Dense-Wooded Species Controls Above-Ground Biomass Stored in African Moist Forests. Journal of Ecology, 99, 981-990. https://doi.org/10.1111/j.1365-2745.2011.01829.x
[39]
Ranger, J. (1978) Research on the Comparative Biomasses of Two Corsican Pine Plantations with or without Fertilization. Annales des sciences forestières, INRA/EDP Sciences, 35, 93-115. https://doi.org/10.1051/forest/19780201
[40]
IPCC (2006) 2019 IPCC Guidelines for National Green house Gas Inventories. Volume 4 Agriculture, Forestry and Other Land Use. https://www.ipcc-nggip.iges.or.jp/public/2006gl/french/vol4.html
[41]
Ndiaye, O., Diallo, A., Sagna, M.B. and Guisse, A. (2013) Floristic Diversity of Woody Stands in Ferlo, Senegal. VertigO—The Electronic Journal in Environmental Sciences, 13, 12.
[42]
Tsoumou, B.R., Lumandé, K.J., Kampé, J.P. and Nzila, J.D. (2016) Estimation of the Quantity of Carbon Sequestered by the Dimonika Model Forest (Southwest of the Republic of Congo). Congo Basin Forest & Environment Scientific and Technical Review, 6, 39-45.
[43]
Zianis, D., Muukkonen, P., Mäkipää, R. and Mencuccini, M. (2005) Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica Monographs No. 4. The Finnish Society of Forest Science and the Finnish Forest Research Institute, Vantaa, 12, 25-44. https://www.metla.fi/silvafennica/full/smf/smf004.pdf
[44]
Hofstad, O. (2005) Review of Biomass and Volume Functions for Individual Trees and Shrubs in Southeast Africa. Journal of Tropical Forest Science, 17, 151-162. https://www.jstor.org/stable/2361653
[45]
FAO (1997) Estimating Biomass and Biomass Change of Tropical Forests. A Primer Par S. Brown. Etude FAO: Forêts n° 134. Rome.
[46]
Namata, S., Adagoye, B., Barke, A., Youssifi, S., Massaoudou, M., Boubacar, M., Amani, A., Issoufou, H.B.A, Kaire, M., Larwanou, M. and Mahamane, A. (2015) The Carbone Sequestration Potential of the Mains Agroforestry Woody Species in Niger Agrosystemes. University Dan Dicko Dankoulodo of Maradi University Abdou Moumouni of Niamey AGRHYMET Regional Center, 17 p.
[47]
Kuyah, S., Dietz, J., Muthuri, C., Jamnadass, R., Mwangi, P., Coe, R. and Neufeldt, H. (2012) Allometric Equations for Estimating Biomass in Agricultural Landscapes: Aboveground Biomass. Agriculture, Ecosystems & Environment, 158, 216-224. https://doi.org/10.1016/j.agee.2012.05.011
[48]
Fayolle, A., Rondeux, J., Doucet, J.L., Ernst, G., Bouissou, C., Quevauvillers, S., Bourland, N., Feteke, R. and Lejeune, P. (2013) Revise Scaling Tariffs to Better Manage Cameroon’s Forests. Bois et Forêts des Tropiques, 317, 35-49. https://doi.org/10.19182/bft2013.317.a20521
[49]
Mbow, C., Chhin, S., Sambou, B. and Skole, D. (2013) Potential of Dendrochronology to Assess Annual Rates of Biomass Productivity in Savanna Trees of West Africa. Dendrochronologia, 31, 41-51. https://doi.org/10.1016/j.dendro.2012.06.001
[50]
Baskerville, G.L. (1965) Estimation of Dry Weight of Tree Components and Total Standing Crop in Conifer Stands. Ecology, 46, 867-869. https://doi.org/10.2307/1934021
[51]
Whitaker, R.H. and Woodwell, G.M. (1968) Dimension, and Production Relations of Trees and Shrubs in the Brookhaven Forest, New York. Journal of Ecology, 56, 1-25. https://doi.org/10.1038/2325
[52]
Whitaker, R.H. and Woodwell, G.M. (1969) Measurement of Net Primary Production of Forests. Colloque sur la productivité des Ecosystèmes forestiers, UNESCO PBI, Bruxelles.
[53]
Riedacker, A. (1968) Méthode d’estimation de la biomasse d’un arbre. D. E. A. Biologie végétale, 31 p., Fac. Sci. Orsay.
[54]
Keays, J.L. (1971) Complete Tree Utilization: An Analysis of the Literature. Part III: Branches. Info. Rep. VP-X-70. Vancouver Forest Products Laboratory. Cdn. For. Ser. 1971, 67p.
[55]
Egunjobij, K. (1976) An Evaluation of Five Methods for Estimating Biomass of an Even Aged Plantation of Pinus caribaea L. Oecologia Plantarum, 11, 109-116. http://pascal-francis.inist.fr/vibad/index.php
[56]
Young, H.E. (1971) Biomass Sampling Methods for Puckerbrush Stands. XV IURO Congress University of Florida, Gainesville, 179-190.
[57]
Clement, J. (1982) Estimation of Volumes and Productivity of Mixed Forests and Tropical Grasses. Woods and Forests of the Tropics, 198, 35-58.
[58]
Sylla, M.L. (1997) Rapid Assessment of the Productivity and Production of Plant Formations: Bamako and Ségou Basins. Mission Report. Bamako, Mali, Republic of Mali, Ministry of Rural Development and Environment, National Directorate of Rural Development and Equipment, 27 p.
[59]
Ichaou, A. (2000) Dynamics and Productivity of Contracted Forest Structures in the Western Nigerian Plateaux. Doctoral Thesis, Paul Sabatier-Toulouse 3 University, Toulouse, 231 p.
[60]
Ibrahima, A. and Fanta, C.A. (2008) Estimation of the Carbon Stock in the Tree and Shrub Facies of the Sudano Guinean Savannas of Ngaoundéré, Cameroon. Cameroon Journal of Experimental Biology, 4, 1-11. https://doi.org/10.4314/cajeb.v4i1.37970