Therapies based on stem cell transplants offer significant potential in
the field of regenerative medicine. Monitoring the fate of the transplanted
stem cells in a timely manner is considered one of the main limitations for
long-standing success of stem cell transplants. Imaging methods that visualize
and track stem cells in vivo non-invasively in real time are helpful towards the development of successful
cell transplantation techniques. Novel molecular imaging methods which are
non-invasive particularly such as MRI have been of great recent interest.
Hence, mouse models which are of clinical relevance have been studied by
injecting contrast agents used for labelling cells such as super-paramagnetic
iron-oxide (SPIO) nanoparticles for cellular imaging. The MR techniques which
can be used to generate positive contrast images have been of much relevance
recently for tracking of the labelled cells. Particularly when the
off-resonance region in the vicinity of the labeled cells is selectively
excited while suppressing the signals from the non-labeled regions by the
method of spectral dephasing. Thus, tracking of magnetically labelled cells
employing positive contrast in vivo MR imaging methods in a burn mouse model in a non-invasive way has been the
scope of this study. The consequences have direct implications for monitoring
labeled stem cells at some stage in wound healing. We suggest that our approach
can be used in clinical trials in molecular and regenerative medicine.
References
[1]
Kozlik, M. and Wojcicki, P. (2014) The Use of Stem Cells in Plastic and Reconstructive Surgery. Advances in Clinical and Experimental Medicine, 23, 1011-1017.
https://doi.org/10.17219/acem/37360
[2]
Maltsev, V.A., Rohwedel, J., Hescheler, J. and Wobus, A.M. (1993) Embryonic Stem Cells Differentiate in Vitro into Cardiomyocytes Representing Sinusnodal, Atrial and Ventricular Cell Types. Mechanisms of Development, 44, 41-50.
https://doi.org/10.1016/0925-4773(93)90015-P
[3]
Ghieh, F., Jurjus, R., Ibrahim, A., Geagea, A.G., Daouk, H., El Baba, B., Chams, S., Matar, M., Zein, W. and Jurjus, A. (2015) The Use of Stem Cells in Burn Wound Healing: A Review. BioMed Research International, 2015, Article ID: 684084. https://doi.org/10.1155/2015/684084
[4]
Jayaraman, P., Nathan, P., Vasanthan, P., Musa, S. and Govindasamy, V. (2013) Stem Cells Conditioned Medium: A New Approach to Skin Wound Healing Management. Cell Biology International, 37, 1122-1128.
https://doi.org/10.1002/cbin.10138
[5]
Nakamura, Y., Ishikawa, H., Kawai, K., Tabata, Y. and Suzuki, S. (2013) Enhanced Wound Healing by Topical Administration of Mesenchymal Stem Cells Transfected with Stromal Cell-Derived Factor-1. Biomaterials, 34, 9393-9400.
https://doi.org/10.1016/j.biomaterials.2013.08.053
[6]
Hu, M., Ludlow, D., Alexander, J.S., McLarty, J. and Lian, T. (2014) Improved Wound Healing of Postischemic Cutaneous Flaps with the Use of Bone Marrow-Derived Stem Cells. Laryngoscope, 124, 642-648.
https://doi.org/10.1002/lary.24293
[7]
Shumakov, V.I., Onishchenko, N.A., Rasulov, M.F., Krasheninnikov, M.E. and Zaidenov, V.A. (2003) Mesenchymal Bone Marrow Stem Cells More Effectively Stimulate Regeneration of Deep Burn Wounds than Embryonic Fibroblasts. Bulletin of Experimental Biology and Medicine, 136, 192-195.
https://doi.org/10.1023/A:1026387411627
[8]
Rasulov, M.F., Vasilchenkov, A.V., Onishchenko, N.A., Krasheninnikov, M.E., Kravchenko, V.I., Gorshenin, T.L., Pidtsan, R.E. and Potapov, I.V. (2005) First Experience of the Use Bone Marrow Mesenchymal Stem Cells for the Treatment of a Patient with Deep Skin Burns. Bulletin of Experimental Biology and Medicine, 139, 141-144. https://doi.org/10.1007/s10517-005-0232-3
[9]
Rasulov, M.F., Vasilenko, V.T., Zaidenov, V.A. and Onishchenko, N.A. (2006) Cell Transplantation Inhibits Inflammatory Reaction and Stimulates Repair Processes in Burn Wound. Bulletin of Experimental Biology and Medicine, 142, 112-115.
https://doi.org/10.1007/s10517-006-0306-x
[10]
Lataillade, J.J., Doucet, C., Bey, E., Carsin, H., Huet, C., Clairand, I., Bottollier-Depois, J.F., Chapel, A., Ernou, I., Gourven, M., et al. (2007) New Approach to Radiation Burn Treatment by Dosimetry-Guided Surgery Combined with Autologous Mesenchymal Stem Cell Therapy. Regenerative Medicine, 2, 785-794.
https://doi.org/10.2217/17460751.2.5.785
[11]
Bey, E., Prat, M., Duhamel, P., Benderitter, M., Brachet, M., Trompier, F., Battaglini, P., Ernou, I., Boutin, L., Gourven, M., et al. (2010) Emerging Therapy for Improving Wound Repair of Severe Radiation Burns Using Local Bone Marrow-Derived Stem Cell Administrations. Wound Repair and Regeneration, 18, 50-58. https://doi.org/10.1111/j.1524-475X.2009.00562.x
[12]
Liu, P., Deng, Z., Han, S., Liu, T., Wen, N., Lu, W., Geng, X., Huang, S. and Jin, Y. (2008) Tissue-Engineered Skin Containing Mesenchymal Stem Cells Improves Burn Wounds. Artificial Organs, 32, 925-931.
https://doi.org/10.1111/j.1525-1594.2008.00654.x
[13]
Song, X., Chan, K.W. and McMahon, M.T. (2011) Screening of CEST MR Contrast Agents. Methods in Molecular Biology, 771, 171-187.
https://doi.org/10.1007/978-1-61779-219-9_9
[14]
Voura, E.B., Jaiswal, J.K., Mattoussi, H. and Simon, S.M. (2004) Tracking Metastatic tumor Cell Extravasation with Quantum Dot Nanocrystals and Fluorescence Emission-Scanning Microscopy. Nature Medicine, 10, 993-998.
https://doi.org/10.1038/nm1096
[15]
Lei, Y., Tang, H., Yao, L., Yu, R., Feng, M. and Zou, B. (2008) Applications of Mesenchymal Stem Cells Labeled with Tat Peptide Conjugated Quantum Dots to Cell Tracking in Mouse Body. Bioconjugate Chemistry, 19, 421-427.
https://doi.org/10.1021/bc0700685
[16]
Massoud, T.F. and Gambhir, S.S. (2003) Molecular Imaging in Living Subjects: Seeing Fundamental Biological Processes in a New Light. Genes & Development, 17, 545-580. https://doi.org/10.1101/gad.1047403
[17]
Adonai, N., Adonai, N., Nguyen, K.N., Walsh, J., Iyer, M., Toyokuni, T., Phelps, M.E., McCarthy, T., McCarthy, D.W. and Gambhir, S.S. (2002) Ex Vivo Cell Labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for Imaging Cell Trafficking in Mice with Positron-Emission Tomography. Proceedings of the National Academy of Sciences of the United States of America, 99, 3030-3035.
https://doi.org/10.1073/pnas.052709599
[18]
Zanzonico, P., Koehne, G., Gallardo, H.F., Doubrovin, M., Doubrovina, E., Finn, R., Blasberg, R.G., Riviere, I., O’Reilly, R.J., Sadelain, M., et al. (2006) [131I]FIAU Labeling of Genetically Transduced, Tumor-Reactive Lymphocytes: Cell-Level Dosimetry and Dose-Dependent toxicity. European Journal of Nuclear Medicine and Molecular Imaging, 33, 988-997. https://doi.org/10.1007/s00259-005-0057-3
[19]
Nejadnik, H., Henning, T.D., Castaneda, R.T., Boddington, S., Taubert, S., Jha, P., Tavri, S., Golovko, D., Ackerman, L., Meier, R., et al. (2012) Somatic Differentiation and MR Imaging of Magnetically Labeled Human Embryonic Stem Cells. Cell Transplantation, 21, 2555-2567. https://doi.org/10.3727/096368912X653156
[20]
Srivastava, A.K. and Bulte, J.W. (2014) Seeing Stem Cells at Work in Vivo. Stem Cell Reports, 10, 127-144. https://doi.org/10.1007/s12015-013-9468-x
[21]
Louie, A. (2010) Multimodality Imaging Probes: Design and Challenges. Chemical Reviews, 110, 3146-3195. https://doi.org/10.1021/cr9003538
[22]
Vande Velde, G., Baekelandt, V., Dresselaers, T. and Himmelreich, U. (2009) Magnetic Resonance Imaging and Spectroscopy Methods for Molecular Imaging. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 53, 565-585.
[23]
Winter, P.M., Caruthers, S.D., Lanza, G.M. and Wickline, S.A. (2010) Quantitative Cardiovascular Magnetic Resonance for Molecular Imaging. Journal of Cardiovascular Magnetic Resonance, 12, 62. https://doi.org/10.1186/1532-429X-12-62
[24]
Britton, M.M. (2010) Magnetic Resonance Imaging of Chemistry. Chemical Society Reviews, 39, 4036-4043. https://doi.org/10.1039/b908397a
[25]
Dale, B.M., Brown, M.A. and Semelka, R.C. (2015) MRI Basic Principles and Applications. Wiley Blackwell/John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9781119013068
[26]
Caravan, P., Ellison, J.J., McMurry, T.J. and Lauffer, R.B. (1999) Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chemical Reviews, 99, 2293-2352. https://doi.org/10.1021/cr980440x
[27]
Rocklage, S.M., Cacheris, W.P., Quay, S.C., Hahn, F.E. and Raymond, K.N. (1989) Synthesis and Characterization of a Paramagnetic Chelate for Magnetic Resonance Imaging Enhancement. Inorganic Chemistry, 28, 477-485.
https://doi.org/10.1021/ic00302a019
[28]
Na, H.B., Lee, J.H., An, K., Park, Y.I., Park, M., Lee, I.S., Nam, D.H., Kim, S.T., Kim, S.H., Kim, S.W., et al. (2007) Development of a T1 Contrast Agent for Magnetic Resonance Imaging Using MnO Nanoparticles. Angewandte Chemie International Edition, 46, 5397-5401. https://doi.org/10.1002/anie.200604775
[29]
Bjornerud, A. and Johansson, L. (2004) The Utility of Superparamagnetic Contrast Agents in MRI: Theoretical Consideration and Applications in the Cardiovascular System. NMR in Biomedicine, 17, 465-477. https://doi.org/10.1002/nbm.904
[30]
Srinivas, M., Morel, P.A., Ernst, L.A., Laidlaw, D.H. and Ahrens, E.T. (2007) Fluorine-19 MRI for Visualization and Quantification of Cell Migration in a Diabetes Model. Magnetic Resonance in Medicine, 58, 725-734.
https://doi.org/10.1002/mrm.21352
[31]
Janjic, J.M., Srinivas, M., Kadayakkara, D.K. and Ahrens, E.T. (2008) Self-Delivering Nanoemulsions for Dual Fluorine-19 MRI and Fluorescence Detection. Journal of the American Chemical Society, 130, 2832-2841. https://doi.org/10.1021/ja077388j
[32]
Waters, E.A., Chen, J., Yang, X., Zhang, H., Neumann, R., Santeford, A., Arbeit, J., Lanza, G.M. and Wickline, S.A. (2008) Detection of Targeted Perfluorocarbon Nanoparticle Binding Using 19F Diffusion Weighted MR Spectroscopy. Magnetic Resonance in Medicine, 60, 1232-1236. https://doi.org/10.1002/mrm.21794
[33]
Waters, E.A., Chen, J., Allen, J.S., Zhang, H., Lanza, G.M. and Wickline, S.A. (2008) Detection and Quantification of Angiogenesis in Experimental Valve Disease with Integrin-Targeted Nanoparticles and 19-Fluorine MRI/MRS. Journal of Cardiovascular Magnetic Resonance, 10, 43. https://doi.org/10.1186/1532-429X-10-43
[34]
Ruiz-Cabello, J., Walczak, P., Kedziorek, D.A., Chacko, V.P., Schmieder, A.H., Wickline, S.A., Lanza, G.M. and Bulte, J.W. (2008) In Vivo “Hot Spot” MR Imaging of Neural Stem Cells Using Fluorinated Nanoparticles. Magnetic Resonance in Medicine, 60, 1506-1511. https://doi.org/10.1002/mrm.21783
[35]
Partlow, K.C., Chen, J., Brant, J.A., Neubauer, A.M., Meyerrose, T.E., Creer, M.H., Nolta, J.A., Caruthers, S.D., Lanza, G.M. and Wickline, S.A. (2007) 19F Magnetic Resonance Imaging for Stem/Progenitor Cell Tracking with Multiple Unique Perfluorocarbon Nanobeacons. The FASEB Journal, 21, 1647-1654.
https://doi.org/10.1096/fj.06-6505com
[36]
Neubauer, A.M., Caruthers, S.D., Hockett, F.D., Cyrus, T., Robertson, J.D., Allen, J.S., Williams, T.D., Fuhrhop, R.W., Lanza, G.M. and Wickline, S.A. (2007) Fluorine Cardiovascular Magnetic Resonance Angiography in Vivo at 1.5 T with Perfluorocarbon Nanoparticle Contrast Agents. Journal of Cardiovascular Magnetic Resonance, 9, 565-573. https://doi.org/10.1080/10976640600945481
[37]
Geraldes, C.F. and Laurent, S. (2009) Classification and Basic Properties of Contrast Agents for Magnetic Resonance Imaging. Contrast Media & Molecular Imaging, 4, 1-23. https://doi.org/10.1002/cmmi.265
[38]
Martirosian, P., Rommel, E., Schick, F. and Deimling, M. (2008) Control of Susceptibility-Related Image Contrast by Spin-Lock Techniques. Magnetic Resonance Imaging, 26, 1381-1387. https://doi.org/10.1016/j.mri.2008.04.013
[39]
Redfield, A.G. (1969) Nuclear Spin Thermodynamics in the Rotating Frame. Science, 164, 1015-1023. https://doi.org/10.1126/science.164.3883.1015
[40]
Cunningham, C.H., Arai, T., Yang, P.C., McConnell, M.V., Pauly, J.M. and Conolly, S.M. (2005) Positive Contrast Magnetic Resonance Imaging of Cells Labeled with Magnetic Nanoparticles. Magnetic Resonance in Medicine, 53, 999-1005.
https://doi.org/10.1002/mrm.20477
[41]
Hao, R., Xing, R., Xu, Z., Hou, Y., Gao, S. and Sun, S. (2010) Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, 22, 2729-2742. https://doi.org/10.1002/adma.201000260
[42]
Torrey, H.C. (1949) Transient Nutations in Nuclear Magnetic Resonance. Physical Review, 76, 1059-1068. https://doi.org/10.1103/PhysRev.76.1059
Farrar, C.T., Dai, G., Novikov, M., Rosenzweig, A., Weissleder, R., Rosen, B.R. and Sosnovik, D.E. (2008) Impact of Field Strength and Iron Oxide Nanoparticle Concentration on the Linearity and Diagnostic Accuracy of Off-Resonance Imaging. NMR in Biomedicine, 21, 453-463. https://doi.org/10.1002/nbm.1209
[45]
Rad, A.M., Iskander, A.S., Janic, B., Knight, R.A., Arbab, A.S. and Soltanian-Zadeh, H. (2009) AC133+ Progenitor Cells as Gene Delivery Vehicle and Cellular Probe in Subcutaneous Tumor Models: A Preliminary Study. BMC Biotechnology, 9, 28.
https://doi.org/10.1186/1472-6750-9-28
[46]
Walczak, P., Kedziorek, D.A., Gilad, A.A., Lin, S. and Bulte, J.W. (2005) Instant MR Labeling of Stem Cells Using Magnetoelectroporation. Magnetic Resonance in Medicine, 54, 769-774. https://doi.org/10.1002/mrm.20701
[47]
Seppenwoolde, J.H., Viergever, M.A. and Bakker, C.J. (2003) Passive Tracking Exploiting Local Signal Conservation: The White Marker Phenomenon. Magnetic Resonance in Medicine, 50, 784-790. https://doi.org/10.1002/mrm.10574
[48]
Bakker, C.J., Seppenwoolde, J.H. and Vincken, K.L. (2006) Dephased MRI. Magnetic Resonance in Medicine, 55, 92-97. https://doi.org/10.1002/mrm.20733
[49]
Carter, E., Hamrahi, V., Paul, K., Jung, W., Barrow, S., Bonab, A., Tompkins, R. and Fischman, A. (2011) Bone Marrow Cells in Burn Injury Wound Healing. Journal of Nuclear Medicine, 52, 1554.
[50]
Padfield, K.E., Astrakas, L.G., Zhang, Q., Gopalan, S., Dai, G., Mindrinos, M.N., Tompkins, R.G., Rahme, L.G. and Tzika, A.A. (2005) Burn Injury Causes Mitochondrial Dysfunction in Skeletal Muscle. Proceedings of the National Academy of Sciences of the United States of America, 102, 5368-5373.
https://doi.org/10.1073/pnas.0501211102
[51]
Rad, A.M., Janic, B., Iskander, A., Soltanian-Zadeh, H. and Arbab, A.S. (2007) Measurement of Quantity of Iron in Magnetically Labeled Cells: Comparison among Different UV/VIS Spectrometric Methods. Biotechniques, 43, 627-628, 630, 632 passim. https://doi.org/10.2144/000112599
[52]
Hennig, J., Nauerth, A. and Friedburg, H. (1986) RARE Imaging: A Fast Imaging Method for Clinical MR. Magnetic Resonance in Medicine, 3, 823-833.
https://doi.org/10.1002/mrm.1910030602
[53]
Andronesi, O.C., Mintzopoulos, D., Righi, V., Psychogios, N., Kesarwani, M., He, J., Yasuhara, S., Dai, G., Rahme, L.G. and Tzika, A.A. (2010) Combined Off-Resonance Imaging and T2 Relaxation in the Rotating Frame for Positive Contrast MR Imaging of Infection in a Murine Burn Model. Magnetic Resonance Imaging, 32, 1172-1183. https://doi.org/10.1002/jmri.22349
[54]
Frahm, J., Haase, A. and Matthaei, D. (1986) Rapid NMR Imaging of Dynamic Processes Using the FLASH Technique. Magnetic Resonance in Medicine, 3, 321-327. https://doi.org/10.1002/mrm.1910030217
[55]
Hamrahi, V.F., Goverman, J., Jung, W., Wu, J.C., Fischman, A.J., Tompkins, R.G., Yu, Y.Y., Fagan, S.P. and Carter, E.A. (2012) In Vivo Molecular Imaging of Murine Embryonic Stem Cells Delivered to a Burn Wound Surface via Integra(R) Scaffolding. Journal of Burn Care & Research, 33, e49-e54.
https://doi.org/10.1097/BCR.0b013e3182331d1c
[56]
Kedziorek, D.A. and Kraitchman, D.L. (2010) Superparamagnetic Iron Oxide Labeling of Stem Cells for MRI Tracking and Delivery in Cardiovascular Disease. Methods in Molecular Biology, 660, 171-183.
https://doi.org/10.1007/978-1-60761-705-1_11
[57]
Hedlund, A., Ahren, M., Gustafsson, H., Abrikossova, N., Warntjes, M., Jonsson, J.I., Uvdal, K. and Engstrom, M. (2011) Gd(2)O(3) Nanoparticles in Hematopoietic Cells for MRI Contrast Enhancement. International Journal of Nanomedicine, 6, 3233-3240. https://doi.org/10.2147/IJN.S23940
[58]
Balchandani, P., Yamada, M., Pauly, J., Yang, P. and Spielman, D. (2009) Self-Refocused Spatial-Spectral Pulse for Positive Contrast Imaging of Cells Labeled with SPIO Nanoparticles. Magnetic Resonance in Medicine, 62, 183-192.
https://doi.org/10.1002/mrm.21973
[59]
Kuhlpeter, R., Dahnke, H., Matuszewski, L., Persigehl, T., von Wallbrunn, A., Allkemper, T., Heindel. W.L., Schaeffter, T. and Bremer, C. (2007) R2 and R2* Mapping for Sensing Cell-Bound Superparamagnetic Nanoparticles: In Vitro and Murine in Vivo Testing. Radiology, 245, 449-457.
https://doi.org/10.1148/radiol.2451061345
[60]
Nejadnik, H., Castillo, R. and Daldrup-Link, H.E. (2013) Magnetic Resonance Imaging and Tracking of Stem Cells. Methods in Molecular Biology, 1052, 167-176.
https://doi.org/10.1007/7651_2013_16
[61]
Castaneda, R.T., Khurana, A., Khan, R. and Daldrup-Link, H.E. (2011) Labeling Stem Cells with Ferumoxytol, an FDA-Approved Iron Oxide Nanoparticle. Journal of Visualized Experiments, 57, e3482. https://doi.org/10.3791/3482