全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2021 

磁场方向对磁镊的伸长测量噪音的影响
The Effect of Magnetic Field Direction on the Extension Noise in Magnetic Tweezers Measurement

DOI: 10.12677/BIPHY.2021.91001, PP. 1-9

Keywords: 单分子操纵,磁镊,DNA,背景噪音
Single Molecule Manipulation
, Magnetic Tweezers, DNA, Background Noise

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁镊作为一种单分子操纵技术被广泛地应用于蛋白质和DNA等生物大分子的物理、化学性质和生物功能的探究。通常,磁镊使用反向平行的双磁铁对连接着生物大分子的超顺磁球施加拉力,从而实现对单分子的拉伸。当拉力小于3皮牛且分子构象转变引起的伸长变化小于10 nm时,由磁球热运动引起的在拉力方向上的噪音会使分子伸长的变化难以准确测量。为了提高磁镊在小力下对分子伸长的测量精度,我们使用了单根圆柱状磁铁,以减小磁球转动在拉力方向上引入的噪音。我们使用了双磁铁和单磁铁分别对517 bp的DNA的进行了拉伸实验。通过比较两者的拉力–伸长曲线,我们发现当拉力小于3皮牛的时候,使用柱状单磁铁的实验组在拉力方向上的背景噪音显著小于双磁铁实验组。
As a single-molecule manipulation technology, magnetic tweezers are widely used to explore the properties and biological functions of biological macromolecules such as proteins and DNA. Generally, magnetic tweezers use anti-parallel double magnets to exert a pulling force on the superparamagnetic spheres connected with biological macromolecules, thereby realizing the stretching of single molecules. When the tensile force is less than 3 pN, and the extension change caused by the molecular conformational transition is less than 10 nm, the noise in the tensile direction caused by the thermal motion of the magnetic bead will make the molecular extension change difficult to measure accurately. In order to improve the accuracy of the magnetic tweezers in the measurement of molecular extension under small force, we use a single cylindrical magnet to reduce the noise of the magnetic bead in the direction of tension. We used anti-parallel double magnets and a single magnet to stretch a 517 bp DNA. By comparing the force-extension curves, it is determined that when the tensile force is less than 3 pN, the extension noise in the experiments using a cylindrical single magnet is significantly smaller than that in the experiments using antiparallel double magnets.

References

[1]  Neuman, K.C. and Nagy, A. (2008) Single-Molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy. Nature Methods, 5, 491-505.
https://doi.org/10.1038/nmeth.1218
[2]  Strunz, T., Oroszlan, K., Schafer, R. and Guntherodt, H.J. (1999) Dynamic Force Spectroscopy of Single DNA Molecules. Pro-ceedings of the National Academy of Sciences of the United States of America, 96, 11277-11282.
https://doi.org/10.1073/pnas.96.20.11277
[3]  Chen, H., Fu, H., Zhu, X., Cong, P., Nakamura, F. and Yan, J. (2011) Improved High-Force Magnetic Tweezers for Stretching and Refolding of Proteins and Short DNA. Biophysical Journal, 100, 517-523.
https://doi.org/10.1016/j.bpj.2010.12.3700
[4]  Izadi, D., Chen, Y., Whitmore, M.L., Slivka, J.D., Ching, K., La-pidus, L.J. and Comstock, M.J. (2018) Combined Force Ramp and Equilibrium High-Resolution Investigations Reveal Multipath Heterogeneous Unfolding of Protein G. The Journal of Physical Chemistry B, 122, 11155-11165.
https://doi.org/10.1021/acs.jpcb.8b06199
[5]  De Sancho, D., Schonfelder, J., Best, R.B., Perez-Jimenez, R. and Munoz, V. (2018) Instrumental Effects in the Dynamics of an Ultrafast Folding Protein under Mechanical Force. Journal of Physical Chemistry B, 122, 11147-11154.
https://doi.org/10.1021/acs.jpcb.8b05975
[6]  Qian, H., Chen, H. and Yan, J. (2016) Frontier of Soft Matter Ex-perimental Technique: Single Molecular Manipulation. Acta Physica Sinica, 65, 187-196.
https://doi.org/10.7498/aps.65.188706
[7]  Lipfert, J., Wiggin, M., Kerssemakers, J.W., Pedaci, F. and Dekker, N.H. (2011) Freely Orbiting Magnetic Tweezers to Directly Monitor Changes in the Twist of Nucleic Acids. Nature Communications, 2, 439.
https://doi.org/10.1038/ncomms1450
[8]  Lipfert, J., Skinner, G.M., Keegstra, J.M., Hensgens, T., Jager, T., Dulin, D., Kober, M., Yu, Z., Donkers, S.P., Chou, F.C., Das, R. and Dekker, N.H. (2014) Double-Stranded RNA under Force and Torque: Similarities to and Striking Differences from Double-Stranded DNA. Proceedings of the National Academy of Sciences, 111, 15408-15413.
https://doi.org/10.1073/pnas.1407197111
[9]  Guo, Q., He, Y. and Lu, H.P. (2015) Interrogating the Activities of Conformational Deformed Enzyme by Single-Molecule Fluorescence-Magnetic Tweezers Microscopy. Proceedings of the National Academy of Sciences of the United States of America, 112, 13904-13909.
https://doi.org/10.1073/pnas.1506405112
[10]  Adhikari, A.S., Chai, J. and Dunn, A.R. (2011) Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1. Journal of the American Chemical Society, 133, 1686-1689.
https://doi.org/10.1021/ja109972p
[11]  Chen, H., Yuan, G., Winardhi, R.S., Yao, M., Popa, I., Fernandez, J.M. and Yan, J. (2015) Dynamics of Equilibrium Folding and Unfolding Transitions of Titin Immunoglo-bulin Domain under Constant Forces. Journal of the American Chemical Society, 137, 3540-3546.
https://doi.org/10.1021/ja5119368
[12]  Yang, Z.J., Yuan, G.H., Zhai, W.L., Yan, J. and Chen, H. (2016) The Ki-netics of Force-Dependent Hybridization and Strand-Peeling of Short DNA Fragments. Science China Physics, Me-chanics & Astronomy, 59, Article ID: 680013.
https://doi.org/10.1007/s11433-016-0112-0
[13]  Guo, Z.L., Hong, H.Y., Yuan, G.H., Qian, H., Li, B., Cao, Y., Wang, W., Wu, C.X. and Chen, H. (2020) Hidden Intermediate State and Second Pathway Determining Folding and Unfolding Dynamics of GB1 Protein at Low Forces. Physical Review Letters, 125, Article ID: 198101.
https://doi.org/10.1103/PhysRevLett.125.198101
[14]  Yuan, G., Le, S.M., Yao, M.X., Qian, H., Zhou, X., Yan, J. and Chen, H. (2017) Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains. Angewandte Chemie International Edition in English, 56, 5490-5493.
https://doi.org/10.1002/anie.201700411
[15]  Schonfelder, J., De Sancho, D., Berkovich, R., Best, R.B., Munoz, V. and Perez-Jimenez, R. (2018) Reversible Two-State Folding of the Ultrafast Protein gpW under Mechanical Force. Communications Chemistry, 1, 59.
https://doi.org/10.1038/s42004-018-0060-9
[16]  Te Velthuis, A.J., Kerssemakers, J.W., Lipfert, J. and Dekker, N.H. (2010) Quantitative Guidelines for Force Calibration through Spectral Analysis of Magnetic Tweezers Data. Bi-ophysical Journal, 99, 1292-1302.
https://doi.org/10.1016/j.bpj.2010.06.008
[17]  Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A. and Croquette, V. (1996) The Elasticity of a Single Supercoiled DNA Molecule. Science, 271, 1835-1837.
https://doi.org/10.1126/science.271.5257.1835
[18]  Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N. and Kinosita Jr., K. (2001) Direct Observation of DNA Rotation during Transcription by Escherichia coli RNA Poly-merase. Nature, 409, 113-115.
https://doi.org/10.1038/35051126
[19]  Marko, J.Y. (2005) Erratum Statistics of Loop Formation along Double Helix DNAs. Physical Review E, 72, Article ID: 061905.
https://doi.org/10.1103/PhysRevE.72.059901
[20]  Smith, S.B., Cui, Y. and Bustamante, C. (1996) Overstretching B-DNA: The Elastic Response of Individual Double- Stranded and Single-Stranded DNA Molecules. Science, 271, 795-799.
https://doi.org/10.1126/science.271.5250.795

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133