全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锗石墨烯作为Li离子电池负极材料的第一性原理研究
First-Principles Study of Germagraphene as an Anode Material for Lithium-Ion Batteries

DOI: 10.12677/APP.2021.111006, PP. 44-52

Keywords: 第一性原理,石墨烯,锗掺杂,吸附,迁移
The First Principles
, Graphene, Ge Doping, Adsorption, The Migration

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用基于密度泛函理论的第一性原理方法计算了Li在锗掺杂的AAAA型、AABB型和ABAB型石墨烯表面的吸附性质、态密度、电学性质及迁移行为。结果表明,三种掺杂石墨烯结构中,Li原子的稳定吸附位置都为Ge的次近邻H位和Ge原子凹侧上方的Ge-T位。AABB型锗掺杂石墨烯总能量最低,ABAB型锗掺杂石墨烯晶格变化最小,AAAA型锗掺杂石墨烯对Li原子的吸附能力最强。Li原子吸附后,AABB型和ABAB型的锗掺杂石墨烯在费米能级处的态密度提升比较大,产生的载流子更多,电子传导更好,有三个方向的电荷转移:Li→石墨烯、石墨烯→Ge和Li→Ge。Li在AABB型锗掺杂石墨烯表面主要沿1H→2H的迁移路径进行扩散,能垒仅为0.211 eV。研究表明三种结构中AABB型锗掺杂石墨烯更适合作锂离子电池的负极材料。
The first-principles method based on density functional theory was used to calculate the adsorption properties, electronic density of states, electrical properties and migration behavior of Li on the surface of Germagraphene of AAAA, AABB and ABAB types. Among the three Germagraphene structures, the stable adsorption positions of Li atoms are both the next H-site of Ge and the Ge-T site above the concave side of Ge atoms. The total energy of AABB-Germagraphene is the lowest, the lattice change of ABAB Germagraphene is the lowest, and the adsorption energy of AAAA Germa-graphene to Li atoms is the strongest. After Li atom adsorption, the density states of AABB and ABAB Germagraphene improve greatly at the Fermi energy level, resulting in more carriers, better electron conduction, and three-direction charge transfer: Li→graphene, graphene→Ge and Li→Ge. Li diffuses on the surface of AABB Germagraphene mainly along the migration path from 1H to 2H with an energy barrier of 0.211 eV. The results show that AABB Germagraphene is more suitable for cathode material of lithium ion battery.

References

[1]  Tarascon, J.M. and Armand, M. (2001) Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 411, 359-367.
https://doi.org/10.1038/35104644
[2]  Tang. Q., Zhou, Z. and Shen, P. (2012) Are MXenes Promising Anode Materials for Li Ion Batteries Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X=F, OH) Monolayer. Journal of the American Chemical Society, 134, 16909-16916.
https://doi.org/10.1021/ja308463r
[3]  Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., et al. (2008) Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communication, 146, 351-355.
https://doi.org/10.1016/j.ssc.2008.02.024
[4]  Shin, D., Bae, S.K., Yan, C., Kang, J.-M., Ryu, J.C., Ahn, J.-H., et al. (2012) Synythesis and Applications of Grapheme Electrode. Carbon Letters, 13, 1-16.
https://doi.org/10.5714/CL.2012.13.1.001
[5]  Yoo, E.J., Kim, J., Hosono, E., Zhou, H.-S., Kudo, T. and Honma, I. (2008) Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Letters, 8, 2277-2282.
https://doi.org/10.1021/nl800957b
[6]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Du-bonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[7]  Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K. (2009) The Electronic Properties of Grapheme. Review of Modern Physics, 81, 109-162.
https://doi.org/10.1103/RevModPhys.81.109
[8]  Chi, M. and Zhao, Y.P. (2009) Adsorption of Formaldehyde Molecule on the Intrinsic and Al-Doped Graphene: A First Principle Study. Computational Materials Science, 46, 1085-1090.
https://doi.org/10.1016/j.commatsci.2009.05.017
[9]  Noh, S.H., Kwak, D.H., Seo, M.H., Ohsaka, T. and Han, B. (2014) First Principles Study of Oxygen Reduction Reaction Mechanisms on N-Doped Graphene with a Transition Metal Support. Electrochimica Acta, 140, 225-231.
https://doi.org/10.1016/j.electacta.2014.03.076
[10]  Pamungkas, M.A. and Maftuhin, W. (2015) Electronic Struc-tures of Silicene Doped with Galium: First Principle Study. 2015 the 4th International Conference on Material Science and Engineering Technology, Vol. 30, Singapore, 26-28 October 2015, Article No. 03003.
https://doi.org/10.1051/matecconf/20153003003
[11]  Das, D., Hardikar, R.P., Han, S.S., Lee, K.R. and Singh, A.K. (2017) Monolayer BC2: An Ultrahigh Capacity Anode Material for Li Ion Batteries. Physical Chemistry Chemical Physics, 19, 24230-24239.
https://doi.org/10.1039/C7CP04451H
[12]  Wang, H., Wu, M., Lei, X., Tian, Z.F., Xu, B., Huang, K. and Ouyang, C.Y. (2018) Siligraphene as a Promising Anode Material for Lithium-Ion Batteries Predicted from First-Principles Cal-culations. Nano Energy, 49, 67-76.
https://doi.org/10.1016/j.nanoen.2018.04.038
[13]  Hu, J., Ouyang, C., Yang, S.A. and Yang, H.Y. (2019) Ger-magraphene as Promising Anode Material for Lithium-Ion Batteries Predicted from First-Principles Calculations. Na-noscale Horizons, 4, 457-463.
https://doi.org/10.1039/C8NH00333E
[14]  Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558.
https://doi.org/10.1103/PhysRevB.47.558
[15]  Kresse, G. and Hafner, J. (1994) Ab Initio Molecular Dynamics Simulation of the Liquid Metal Amorphous Semiconductor Transition in Germanium. Physical Review B, 49, 14251.
https://doi.org/10.1103/PhysRevB.49.14251
[16]  Kresse, G. and Furthmuller, J. (1996) Efficient Iterative Scheme for Ab Initio Total Energy Calculation Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169
[17]  Kresse, G. and Furthmuller, J. (1996) Efficiency of Ab Initio Total Energy Calculation for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Sci-ence, 6, 15-50.
https://doi.org/10.1016/0927-0256(96)00008-0
[18]  Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopo-tentials to the Projector-Wave Method. Physical Review B, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758
[19]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Bril-louin-Zone Integrations. Physical Review B, Condensed Matter, 13, 5188-5192.
https://doi.org/10.1103/PhysRevB.13.5188
[20]  Tripathi, M., Markevich, A.V., Boettger, R., Facsko, S., Besley, E., Kotakoski, J., et al. (2018) Implanting Germanium into Graphene. ACS Nano, 12, 4641-4647.
https://doi.org/10.1021/acsnano.8b01191

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133