全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

隧道盾构法施工参数对地表沉降的影响分析
Analysis of Shield Tunneling Parameters Influence on Ground Settlement

DOI: 10.12677/HJCE.2021.101006, PP. 48-56

Keywords: 盾构隧道,地表沉降,理论分析,数值模拟,密封舱内压力,地层损失率
Shield Tunnel
, Surface Subsidence, Theoretical Analysis, Numerical Simulation, Pressure in Sealed Chamber, Formation Loss Rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

隧道盾构法施工地表沉降规律是反映施工安全性的最主要体现,以京滨铁路滨海机场隧道为工程背景,通过理论分析和数值模拟手段重点分析盾构法施工参数中不同密封舱压力和地层损失率对地表沉降的影响规律。研究结果表明:1) 随着密封舱内压力增大,掌子面后方累计地表沉降值逐渐减小,而掌子面前方地表会由沉降变为隆起,对于天津地区黏土地层,建议密封舱内压力取平衡土压或略高于平衡土压(0.15 MPa~0.20 MPa);2) 地表沉降最大值随地层损失率增加呈线性增加,地层损失率由0.5%升到3%时,地表沉降值由5.04 mm增大到31.50 mm,建议施工过程中地层损失率控制在0.5%以下。
The surface settlement law of shield tunneling is the most important reflection of construction safety. Taking Binhai Airport Tunnel of Beijing-Binhai Railway as the engineering background, and this paper focuses on the influence of different seal chamber pressure and formation loss rate in shield construction parameters on surface settlement through theoretical analysis and numerical simulation. The results show that: 1) With the increase of the pressure in the sealed chamber, the accumulated surface settlement behind the heading face gradually decreases, while the surface in front of the tunnel face will change from settlement to uplift. For the clay stratum in Tianjin area, it is suggested that the pressure in the chamber should be balanced earth pressure or slightly higher than the equilibrium earth pressure (0.15 MPa~0.20 MPa); 2) The maximum value of ground settlement increases linearly with the increase of formation loss rate. When the formation loss rate increases from 0.5% to 3%, the surface settlement value increases from 5.04 mm to 31.50 mm. And it is suggested that the formation loss rate should be controlled below 0.5%.

References

[1]  张彬. 基于上海地层多线叠交盾构施工的Peck公式之改进[J]. 土工基础, 2020, 34(6): 695-698.
[2]  Clough, G.W. and Schmidt, B. (1981) Design and Performance of Excavations and Tunnels in Soft Clay. Developments in Geotechnical Engineering, 20, 567-634.
https://doi.org/10.1016/B978-0-444-41784-8.50011-3
[3]  O’Reilly, M.P. and New, B.M. (1982) Settlements above Tunnels in the United Kingdom—Their Magnitude and Prediction. Proceeding of Tunnelling’82 Symposium, London, 1st January 1982, 173-181.
[4]  朱合华. 盾构隧道施工过程模拟分析[C]. 第一届海峡两岸隧道与地下工程学术与技术研讨会论文集(上册). 太原: 中国岩石力学与工程学会, 1999: 131-135.
[5]  胡新朋, 孙谋, 王俊兰. 盾构隧道穿越既有建筑物施工应对技术[J]. 现代隧道技术, 2006(6): 60-65.
[6]  赵胤翔, 赵金昌, 郭治铁, 等. 富水粉细砂地层盾构施工引起地表沉降研究[J]. 地下空间与工程学报, 2020, 16(2): 918-924.
[7]  韩凯航, 张成平, 王梦恕. 浅埋隧道围岩应力及位移的显式解析解[J]. 岩土工程学报, 2014, 36(12): 2253-2259.
[8]  魏纲, 徐日庆. 软土隧道盾构法施工引起的纵向地面变形预测[J]. 岩土工程学报, 2005, 27(9): 1077-1081.
[9]  李林, 郑余朝, 张俊儒, 等. 盾构隧道下穿既有铁路现场测试研究[J]. 现代隧道技术, 2006(6): 51-55.
[10]  龙刚. 盾构隧道曲线下穿铁路客站风险源的施工安全控制技术[J]. 国防交通工程与技术, 2020, 18(1): 65-69.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133