全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

杭锦旗地区X区块盒一段孔隙度在严重扩径和非严重扩径条件下的校正方法研究
Paper Study on the Correction Method of Porosity of the First Member of the First Block of the X Block in Hangjinqi Area under Severe and Non-Serious Diameter Expansion

DOI: 10.12677/AG.2021.111004, PP. 33-43

Keywords: 扩径,神经网络,孔隙度,测井解释,非线性
Diameter Expansion
, Neural Network, Porosity, Log Interpretation, Nonlinear

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究区目前主要存在的问题是已有的储层参数解释精度不高,传统的使用单孔隙度曲线或者多孔隙曲线多元回归法计算的储层孔隙度无法满足需求,导致气水识别困难。针对研究区孔隙度方面,首先研究了本研究区大量存在的扩径现象对孔隙度测井曲线的影响。在此基础上将研究区储层扩径现象分为了非严重扩径和严重扩径两个部分。发现非严重扩径条件下储层声波几乎不受扩径影响,密度测井曲线受影响极其微弱;严重扩径下声波同样受影响微弱,密度则受影响严重。对此,在非严重扩径条件下使用神经网络法计算了孔隙度;在严重扩径条件下使用声波和电阻率建立多元回归计算孔隙度。并使用曲线重叠法的交会图法等分析了误差,发现效果远好于先前计算的孔隙度,能为后续的流体识别提供更可靠的孔隙度参数。
The main problem in the study area is that the interpretation accuracy of existing reservoir parameters is not high. The traditional reservoir porosity calculated by the single-porosity curve or the multi-porosity curve multiple regression method cannot meet the demand, which makes it difficult to identify gas and water. Regarding the porosity of the study area, firstly, the influence of the large diameter expansion phenomenon in the study area on the porosity logging curve is studied. On this basis, the reservoir diameter expansion in the study area is divided into two parts: non-serious diameter expansion and severe diameter expansion. It is found that under the condition of non-severe diameter expansion, the reservoir acoustic wave is almost unaffected by diameter expansion, and the density logging curve is extremely weakly affected; under severe diameter expansion, the acoustic wave is also slightly affected, and the density is seriously affected. In this regard, the neural network method is used to calculate the porosity under the condition of non-severe diameter expansion; the multiple regression calculation of the porosity is established using acoustic waves and resistivity under the condition of severe diameter expansion. The error was analyzed using the intersection graph method of the curve overlap method, etc., and found that the effect was much better than the previously calculated porosity, which can provide more reliable porosity parameters for subsequent fluid identification.

References

[1]  荀小全. 东胜气田锦58井区盒1段储层特征及分类评价[J]. 天然气技术与经济, 2018, 12(5): 9-11, 78. http://dx.chinadoi.cn/10.3969/j.issn.2095-1132.2018.05.003
[2]  郭兰. 鄂北杭锦旗地区下石盒子组储层测井评价[D]: [硕士学位论文]. 西安: 西北大学, 2010.
[3]  郑民, 李建忠, 吴晓智, 王社教, 郭秋麟, 于京都, 郑曼, 陈宁生, 易庆. 我国常规与非常规天然气资源潜力、重点领域与勘探方向[J]. 天然气地球科学, 2018, 29(10): 5-19. http://dx.chinadoi.cn/10.11764/j.issn.1672-1926.2018.09.006
[4]  吴静. 致密气储层测井综合评价方法研究[D]: [硕士学位论文]. 北京: 中国地质大学, 2019.
[5]  李建忠, 郑民, 张国生, 杨涛, 王社教, 董大忠, 吴晓智, 瞿辉, 陈晓明. 中国常规与非常规天然气资源潜力及发展前景[J]. 石油学报, 2012, 33(z1): 89-98.
[6]  魏新善, 胡爱平, 赵会涛, 康锐, 石晓英, 刘晓鹏. 致密砂岩气地质认识新进展[J]. 岩性油气藏, 2017, 29(1): 11-20. http://dx.chinadoi.cn/10.3969/j.issn.1673-8926.2017.01.002
[7]  阮秀凯, 刘莉, 张耀举, 戴瑜兴. 现代无线通信系统盲处理技术新进展: 基于智能算法[M]. 上海: 复旦大学出版社, 2015.
[8]  王少龙, 杨斌, 赵倩, 魏杰. BP神经网络在复杂储层流体识别中的应用[J]. 石油化工应用, 2018, 37(7): 45-48.
[9]  魏杰, 杨斌, 刘锋, 张智南. 基于岩性识别的BP神经网络孔隙度预测[J]. 石油化工应用, 2020, 39(3): 105-110. http://dx.chinadoi.cn/10.3969/j.issn.1673-5285.2020.03.023
[10]  曹思远, 梁春生. 储层预测中BP神经网络的应用[J]. 地球物理学进展, 2002, 17(1): 84-90.
[11]  龙一慧, 杨斌, 朱冉, 胡洪涛. BP神经网络在碳酸盐岩储层参数测井解释中的应用[J]. 山东科技大学学报(自然科学版), 2015, 34(6): 32-39. http://dx.chinadoi.cn/10.3969/j.issn.1672-3767.2015.06.005
[12]  杨斌, 匡立春, 孙中春, 施泽进. 神经网络及其在石油测井中的应用[M]. 出版地: 石油工业出版社, 2005.
[13]  Guo, P.X., Akhil, D.-G., 谢继容, 金雁. 最佳变换多元回归法利用测井资料预测渗透率[J]. 天然气勘探与开发, 1998(2): 30-40.
[14]  刘继龙. X凹陷P层组烃源岩测井评价方法研究[J]. 中国锰业, 2019, 37(3): 54-58. http://dx.chinadoi.cn/10.14101/j.cnki.issn.1002-4336.2019.03.013
[15]  杜波, 于正军, 韩建军. 多元线性回归法在DX北带砂砾岩储层孔隙度定量预测中的应用[J]. 天然气勘探与开发, 2012, 35(4): 36-40. http://dx.chinadoi.cn/10.3969/j.issn.1673-3177.2012.04.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133