全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PCA-LDA的非负光谱透过率生成方法
Deriving Nonnegative Spectral Transmittance Based on PCA-LDA

DOI: 10.12677/HJBM.2021.111003, PP. 14-22

Keywords: 高光谱成像,非负光谱透过率,主成分分析,线性判别分析
Hyperspectral Imaging
, Nonnegative Transmittance, Principal Component Analysis, Linear Discriminant Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对高光谱成像,提出了一种基于主成分分析(Principal Component Analysis, PCA)和线性判别分析(Linear Discriminant Analysis, LDA)生成非负光谱透过率的方法。该非负光谱透过率可应用于可编程高光谱成像系统的光学成像结果等效于PCA-LDA数字模型后处理的高光谱数据的结果。该方法通过滤除训练过程中的负值,无需补偿透过比的二次采集,可以直接针对高光谱数据应用,即高光谱数据采集和PCA-LDA后处理可以通过光学成像的物理过程一次性同时实现,有助于在光学和遥感领域的信息应用中实现更智能便捷的光学检测与传感。
In this paper, a method to derive nonnegative spectral transmittance based on Principal Compo-nent Analysis (PCA) and Linear Discriminant Analysis (LDA) is proposed for hyperspectral imaging. The nonnegative spectral transmittance can be applied to the optical imaging of programmable hyperspectral imaging system, and the collected images are supposed to be equivalent to the re-sults after PCA-LDA post-processing. By filtering out the negative value in the training process, the method can be directly applied to hyperspectral data, that is, hyperspectral data acquisition and PCA-LDA post-processing can be realized simultaneously through the physical process of optical imaging, which is helpful to realize more intelligent and convenient optical detection and sensing in sensing applications.

References

[1]  Davis, B.M., Hemphill, A.J., Maltas, D.C., Zipper, M.A., Wang, P. and Ben-Amotz, D. (2011) Multivariate Hyperspectral Raman Imaging Using Compressive Detection. Analytical Chemistry, 83, 5086-5092.
https://doi.org/10.1021/ac103259v
[2]  Quyen, N.T., Jouan, M.D., Dao, N.Q., Da Silva, E. and Ai Phuong, D. (2008) New Raman Spectrometer Using a Digital Micromirror Device and a Photomultiplier Tube Detector for Rapid On-Line Industrial Analysis—Part II: Choice of Analytical Methods. Applied Spectroscopy, 62, 279-284.
https://doi.org/10.1366/000370208783759713
[3]  Van Der Meer, F.D., et al. (2012) Multi- and Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation, 14, 112-128.
https://doi.org/10.1016/j.jag.2011.08.002
[4]  Wei, D., Chen, S., Ong, Y.H., Perlaki, C. and Liu, Q. (2016) Fast Wide Field Raman Spectroscopic Imaging Based on Simultaneous Multi-Channel Image Acquisition and Wiener Estimation. Optics Letters, 41, 2783-2786.
https://doi.org/10.1364/OL.41.002783
[5]  Chen, S., Wang, G., Cui, X. and Liu, Q. (2017) Stepwise Method Based on Wiener Estimation for Spectral Reconstruction in Spectroscopic Raman Imaging. Optics Express, 25, 1005-1018.
https://doi.org/10.1364/OE.25.001005
[6]  Luand, G. and Fei, B. (2014) Medical Hyperspectral Imaging: A Review. Journal of Biomedical Optics, 19, Article No. 010901.
https://doi.org/10.1117/1.JBO.19.1.010901
[7]  Sánchez, S. and Plaza, A. (2014) Fast Determination of the Number of Endmembers for Real-Time Hyperspectral Unmixing on GPUs. Journal of Real-Time Image Processing, 9, 397-405.
https://doi.org/10.1007/s11554-012-0276-3
[8]  Réfrégier, P. and Galland, F. (2019) Bhattacharyya Bound for Raman Spectrum Classification with a Couple of Binary Filters. Optics Letters, 44, 2228-2231.
https://doi.org/10.1364/OL.44.002228
[9]  Wilcox, D.S., Buzzard, G.T., Lucier, B.J., Rehrauer, O.G., Wang, P. and Ben-Amotz, D. (2013) Digital Compressive Chemical Quantitation and Hyperspectral Imaging. Analyst, 138, 4982-4990.
https://doi.org/10.1039/c3an00309d
[10]  Lu, J., et al. (2019) A Programmable Optical Filter with Arbitrary Transmittance for Fast Spectroscopic Imaging and Spectral Data Post-Processing. IEEE Access, 7, 119294-119308.
https://doi.org/10.1109/ACCESS.2019.2937095
[11]  Zhang, F., Zhang, Z., Wei, L., et al. (2020) Coding Convolutional Neural Networks as Spectral Transmittance for Intelligent Hyperspectral Remote Sensing in a Snapshot. IEEE Geoence and Remote Sensing Letters, 1-5.
https://doi.org/10.1109/LGRS.2020.3005982
[12]  Hyperspectral Remote Sensing Scenes.
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Salinas-A_scene

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133