全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

扭曲矩形管管内传热与压降特性的数值研究
Numerical Study of Heat Transfer and Pressure Drop Characteristics in Twisted Rectangular Tube

DOI: 10.12677/APP.2021.112012, PP. 95-107

Keywords: 扭曲矩形管,传热,计算流体力学,数值模拟,湍流
Twisted Rectangular Tube
, Heat Transfer, Computational Fluid Dynamics, Numerical Simulation, Turbulent Flow

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用CFD方法对扭曲矩形管的管内传热和压降特性进行了数值研究,得到雷诺数(Re)在5000~40,000范围内不同几何参数的扭曲矩形管传热与压降特性数据,并对其强化传热机理进行了对比分析。结果表明:当5000 ≤ Re ≤ 40,000时,摩擦系数(f)随长宽比(k)的增大而减少,努塞尔数(Nu)随k的增加先增大后减少,在扭曲比(H)为0.4时达到最大;f均会随着扭距(s)的增加而减少,在s为200 mm时达到最大值,且此时扭曲矩形管具有较高的Nu;扭曲矩形管中形成的二次流促进了热边界层内外流体的热量交换,从而提高扭曲矩形管的综合换热性能。
The characteristics of heat transfer and pressure drop in the twisted rectangular tubes are numerically studied by CFD method. Some sets of data about heat transfer and pressure drop characteristics of twisted rectangular tube with different geometric parameters under the Reynolds number 5000~40,000 are obtained. In addition, the mechanism heat transfer enhancement was analyzed by data comparison. The results show that: in turbulent flow, the friction coefficient decreased with the increase of the aspect ratio, and the Nusselt number first increased and then decreased with the increase of the aspect ratio. The Nusselt number reached the maximum when the twist ratio was 0.4. In turbulent flow, the friction coefficient decreased with the increase of the torque, and reached the maximum value when the twisted pitch length was 200 mm, where the twisted rectangular tube had high Nusselt number. The secondary flow in the twisted rectangular tube promotes the heat exchange between the fluid inside and outside the thermal boundary layer, thus improving the comprehensive heat transfer performance of the twisted rectangular tube.

References

[1]  Bishara, F. (2010) Numerical Simulation of Fully Developed Laminar Flow and Heat Transfer in Isothermal Helically Twisted Tubes with Elliptical Cross-Sections. University of Cincinnati, Cincinnati.
[2]  高学农, 邹华春, 王端阳, 等. 高扭曲比螺旋扁管的管内传热及流阻性能[J]. 华南理工大学学报(自然科学版), 2008, 36(11): 17-21+26.
[3]  Wang, L.B., Tao, W.Q., Wang, Q.W., et al. (2001) Experimental and Numerical Study of Turbulent Heat Transfer in Twisted Square Ducts. Journal of Heat Transfer, 123, 868-877.
https://doi.org/10.1115/1.1389464
[4]  Todd, L. (1977) Some Comments on Steady, Laminar Flow through Twisted Pipes. Journal of Engineering Mathematics, 11, 29-48.
https://doi.org/10.1007/BF01535586
[5]  Keun-Shik, C., et al. (1988) Laminar Fluid Flow in a Twisted Elliptic Tube. KSME Journal, 2, 44-51.
https://doi.org/10.1007/BF02944075
[6]  Yang, S., Zhang, L. and Xu, H. (2011) Experimental Study on Convec-tive Heat Transfer and Flow Resistance Characteristics of Water Flow in Twisted Elliptical Tubes. Applied Thermal En-gineering, 31, 2981-2991.
https://doi.org/10.1016/j.applthermaleng.2011.05.030
[7]  Manglik, R.M., Patel, P. and Jog, M.A. (2012) Swirl-Enhanced Laminar Forced Convection through Axially Twisted Rectangular Ducts—Part 2, Fluid Flow. Journal of Enhanced Heat Transfer, 19, 423-436.
https://doi.org/10.1115/HT2012-58304
[8]  吴欣慰, 刘长军, 梁斌, 等. 扭曲扁平管结构对管内传热强化与阻力特性的影响[J]. 化工机械, 2017, 44(5): 547-552.
[9]  Patel, P., Manglik, R.M. and Jog, M.A. (2012) Swirl-Enhanced Laminar Forced Convection through Axially Twisted Rectangular Ducts—Part 1, Fluid Flow. Journal of Enhanced Heat Transfer, 19, 423-436.
https://doi.org/10.1615/JEnhHeatTransf.v19.i5.30
[10]  Dzyubenko, B.V. (1983) Drag in a Heat Exchanger with a Twisted Flow. Journal of Engineering Physics, 44, 237-241.
https://doi.org/10.1007/BF00827353
[11]  Dzyubenko, B.V. and Dreitser, G.A. (1986) Heat Transfer and Fluid Friction in Bundles of Twisted Tubes. Journal of Engineering Physics, 50, 611-618.
https://doi.org/10.1007/BF00871525
[12]  Evlev, V., Kalinin, E., Danilov, I., et al. (1982) Heat Transfer in the Turbulent Swirling Flow in a Channel of Complex Shape. Proceedings of the Seventh International Conference, Vol. 3, Munich, 6-10 September 1982, 171-176.
https://doi.org/10.1615/IHTC7.1660
[13]  刘思宇. 扭曲管管程数值传热模拟[J]. 科技创新导报, 2019, 16(6): 115-117.
[14]  张立振. 内螺纹扭曲管换热器强化传热与流阻性能研究及其工程应用[D]: [硕士学位论文]. 上海: 华东理工大学, 2013.
[15]  周云龙, 张超, 张立彦, 等. 矩形螺旋通道气液两相流流动和传热特性数值研究[J]. 化工机械, 2016, 43(3): 357-364.
[16]  覃文洁, 胡春光, 郭良平, 等. 近壁面网格尺寸对湍流计算的影响[J]. 北京理工大学学报, 2006, 26(5): 388-392.
[17]  Bhadouriya, R., Agrawal, A. and Prabhu, S.V. (2015) Experimental and Numerical Study of Fluid Flow and Heat Transfer in a Twisted Square Duct. International Journal of Heat & Mass Transfer, 82, 143-158.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.054
[18]  韩文娟. 关于U形管式换热器温度场的数值模拟研究[J]. 应用物理, 2020, 10(11): 476-482.
[19]  王超. 冷却条件下超临界CO2在突扩管中流动及其换热的数值模拟[J]. 应用物理, 2015, 5(12): 216-222.
[20]  甄嘉鹏. 多层介质传热的计算模拟[J]. 应用物理, 2019, 9(1): 7-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133