|
电场调节TMDCs及其异质结能带研究进展
|
Abstract:
过渡金属硫化物(TMDCs)是一种受到国内外学者广泛关注的新型二维材料,尤其是它与一些二维层状材料构成的异质结进一步拓展了其在新型光电器件领域的应用。本文综述了近几年通过第一性原理方法研究外电场对单层及双层TMDCs(MoS2,MoSe2,MoTe2,WS2)、两种或者多种TMDCs组建的异质结、TMDCs与BNC型二维层状材料(g-C3N4、g-C2N、BC3和C3N)组建的异质结、TMDCs与石墨烯组建的异质结等材料体系的能带特性的影响。研究表明适当的外电场可以有效地调控TMDCs材料及其异质结的能带结构、自旋极化以及电荷转移,从而使得TMDCs材料及其异质结在光电器件领域有着重要的应用。
Transition-metal dichalcogenides (TMDCs) is one of extensive attention by international and domestic academics of new 2D materials, especially with heterojunctions consists of some two-dimensional layered materials to expand its application in the electronic and photonic devices fields. In this letter we review the latest research advances which the external electric fields control energy band characteristics of monolayer and bilayer TMDCs materials (MoS2, MoSe2 MoTe2, WS2), van der Waals (vdW) heterojunctions composed of multiple TMDCs materials, vdW heterojunctions composed of B, N and C type two-dimensional layered materials (g-C3N4, g-C2N, BC3 and C3N) and TMDCs materials, vdW heterojunctions composed of TMDCs and graphene by the first-principles calculations. These studies suggest that the appropriate external electric field can effectively regulate the energy band, spin polarization and charge transfer of TMDCs materials and its heterojunctions which is beneficial to the application in the optical, electronic and optoelectronic field.
[1] | Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896 |
[2] | Ramasubramaniam, A., Naveh, D. and Towe, E. (2011) Tunable Band Gaps in Bilayer Transition-Metal Dichalcogenides. Physical Review B, 84, Article No. 205325. https://doi.org/10.1103/PhysRevB.84.205325 |
[3] | Khoo, K.H., Mazzoni, M.S.C. and Louie, S.G. (2004) Tuning the Electronic Properties of Boron Nitride Nanotubes with Transverse Electric Fields: A Giant DC Stark Effect, Physical Review B, 69, Article No. 201401.
https://doi.org/10.1103/PhysRevB.69.201401 |
[4] | Qi, J., Li, X., Qian, X. and Feng, J. (2013) Bandgap Engineer-ing of Rippled MoS2 Monolayer under External Electric Field. Applied Physics Letters, 102, Article No. 173112. https://doi.org/10.1063/1.4803803 |
[5] | Chen, P., Cheng, C., Shen, C., Zhang, J., Wu, S., Lu, X.B., Wang, S.P., Du, L.J., Watanabe, K.J., Taniguchi, T., Sun, J.T., Yang, R., Shi, D.X., Liu, K.H., Meng, S. and Zhang, G.Y. (2019) Band Evolution of Two-Dimensional Transition Metal Dichalcogenides under Electric Fields. Applied Physics Letters, 115, Article No. 083104.
https://doi.org/10.1063/1.5093055 |
[6] | Lu, N., Guo, H., Li, L., Dai, J., Wang, L., Mei, W.N., Wu, X.J. and Zeng, X.C. (2014) MoS2/MX2 Heterobilayers: Bandgap Engineering via Tensile Strain or External Electrical Field. Nanoscale, 6, 2879-2886.
https://doi.org/10.1039/C3NR06072A |
[7] | Xue, X., Wang, X. and Mi, W. (2018) Electric Field Effects on Elec-tronic Structure of Tantalum Dichalcogenides van der Waals TaS2/TaSe2 and TaSe2/TaTe2 Heterostructures. Applied Sur-face Science, 455, 963-969.
https://doi.org/10.1016/j.apsusc.2018.06.004 |
[8] | Li, J., Liu, E.Z., Ma, Y.N., Hu, X.Y., Wan, J., Sun, L. and Fan, J. (2016) Synthesis of MoS2/g-C3N4 Nanosheets as 2D Heterojunction Photocatalysts with Enhanced Visible Light Ac-tivity. Applied Surface Science, 364, 694-702.
https://doi.org/10.1016/j.apsusc.2015.12.236 |
[9] | Ye, J., Liu, J. and An, Y. (2020) Electric Field and Strain Effects on the Electronic and Optical Properties of gC3N4/WSe2 van der Waals Heterostructure. Applied Surface Science, 501, Article No. 144262.
https://doi.org/10.1016/j.apsusc.2019.144262 |
[10] | Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S. and Lin, Z. (2014) Vertical and In-Planeheterostructures from WS2/MoS2 Monolayers. Nature Materials, 13, 1135-1142. https://doi.org/10.1038/nmat4091 |
[11] | Zheng, Z., Wang, X. and Mi, W. (2017) Electric Field Tunable Electronic Structure in Two-Dimensional van der Waals g-C2N/XSe2 (X = Mo, W) Heterostructures. Carbon, 117, 393-398. https://doi.org/10.1016/j.carbon.2017.03.018 |
[12] | Bafekry, A., Stampfl, C. and Ghergherehchi, M. (2020) Strain, Electric-Field and Functionalization Induced Widely Tunable Electronic Properties in MoS2/BC3, /C3N and /C3N4 van der Waals Heterostructures. Nanotechnology, 31, Article No. 295202. https://doi.org/10.1088/1361-6528/ab884e |
[13] | Nguyen, H.T.T., Obeid, M.M., Bafekry, A., Idrees, M., Vut, V., Phuc, H.V., Hieun, N., HoaL, T., Amin, B. and Nguyen, C.V. (2020) Interfacial Characteristics, Schottky Contact, and Optical Performance of a Graphene/Ga2SSe van der Waals Heterostructure: Strain Engineering and Electric Field Tuna-bility. Physicalreview B, 102, Article No. 075414. https://doi.org/10.1103/PhysRevB.102.075414 |