全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压下NaBH4和NaBH6的电子能带和声子结构的第一性原理计算研究
First-Principles Calculation on Electronic Band Structure and Phonon Structure for NaBH4 and NaBH6 at High Pressures

DOI: 10.12677/CMP.2021.101001, PP. 1-8

Keywords: 储氢材料,相变,晶格结构,第一性原理计算
Hydrogen Storage Materials
, Phase Transition, Lattice Structure, First-Principles Calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用基于密度泛函理论的第一性原理计算方法和基于进化算法的晶体结构搜索,研究了配位型储氢材料NaBH4和NaBH6在高压下的结构相变,讨论了高压稳定相的电子能带结构和晶格动力学性质。高压下的NaBH4表现出绝缘特征,其带隙约为5 eV,与金刚石的带隙宽度接近,为超宽带隙(UWBG)材料。随着H比例的提高,高压下的NaBH6显示出金属性,表明高压下的NaBHn材料可通过H含量来调制绝缘-金属转变。声子谱的计算还表明,该系列材料具有高达约1000 cm?1 (约30 THz)的声子带隙,可作为潜在的声子晶体材料用于调制太赫兹频段弹性波的传播。
First-principles calculation method based on density functional theory and crystal structure search based on evolutionary algorithm was used to study the structural phase transition of hydrogen storage materials NaBH4 and NaBH6 under high pressures. We discussed the electronic energy of the stable phase, band structure and lattice dynamics properties. NaBH4 shows insulation characteristics, and its band gap is about 5 eV, which is close to the band gap width of diamond, and is an ultra-wide band gap (UWBG) material. With the increase of H ratio, NaBH6 shows metallicity, indicating that NaBHn material can be modulated by the H content to realize the insulator-metal transition. The calculation of the phonon spectrum also shows a phonon band gap of up to about 1000 cm?1 (~30 THz), which can be used as a potential phononic crystal material to modulate the propagation of terahertz elastic waves.

References

[1]  毛宗强. 氢能——21世纪的绿色能源[M]. 北京: 化学工业出版社, 2005: 1-17.
[2]  Johnston, B., Mayo, M.C. and Khare, A. (2005) Hydrogen: The Energy Source for the 21st Century. Technovation, 25, 569-585.
https://doi.org/10.1016/j.technovation.2003.11.005
[3]  [日]氢能协会. 宋永臣, 宁亚东, 金东旭则. 氢能技术[M]. 北京: 科学出版社, 2009: 10-13.
[4]  张健. 镁及其合金氢化物吸放氢性能及电子机制的研究[D]: [硕士学位论文]. 长沙: 湖南大学材料科学与程学院, 2009.
[5]  朱相丽. 国外储氢材料的研究现状[J]. 新材料产业, 2007(3): 54-60.
[6]  Sakintuna, B., Lamari-Darkrim, F. and Hirscher, M. (2007) Metal Hydride Materials for Solid Hydrogen Storage: A Review. International Journal of Hydrogen Energy, 32, 1121-1140.
https://doi.org/10.1016/j.ijhydene.2006.11.022
[7]  Irani, R.S. (2002) Hydrogen Storage: High-Pressure Gas Con-tainment. MRS Bulletin, 27, 680-682.
https://doi.org/10.1557/mrs2002.221
[8]  Biniwale, R.B., Rayalu, S., Devotta, S. and Ichikawa, M. (2008) Chemi-cal Hydrides: A Solution to High Capacity Hydrogen Storage and Supply. International Journal of Hydrogen Energy, 33, 360-365.
https://doi.org/10.1016/j.ijhydene.2007.07.028
[9]  Hood, D.M., Pitzer, R.M. and Schaefer III, H.F. (1979) Elec-tronic Structure of Homoleptic Transition Metal Hydrides: TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4. The Journal of Chemical Physics, 71, 705-712.
https://doi.org/10.1063/1.438357
[10]  Adzic, G.D., Johnson, J.R., Reilly, J.J., McBreen, J., Mukerjee, S., Kumar, M.S., Srinivasan, S., et al. (1995) Cerium Content and Cycle Life of Multicomponent AB5 Hydride Electrodes. Journal of the Electrochemical Society, 142, 3429.
https://doi.org/10.1149/1.2049999
[11]  Shaijumon, M.M., Bejoy, N. and Ramaprabhu, S. (2005) Catalytic Growth of Carbon Nanotubes over Ni/Cr Hydrotalcite-Type Anionic Clay and Their Hydrogen Storage Properties. Applied Surface Science, 242, 192-198.
https://doi.org/10.1016/j.apsusc.2004.08.014
[12]  Poirier, E., Chahine, R., Benard, P., Cossement, D., Lafi, L., Melancon, E., Desilets, S., et al. (2004) Storage of Hydrogen on Single-Walled Carbon Nanotubes and Other Carbon Structures. Applied Physics A, 78, 961-967.
https://doi.org/10.1007/s00339-003-2415-y
[13]  Bogdanovi?, B. and Schwickardi, M. (1997) Ti-Doped Alkali Metal Aluminium Hydrides as Potential Novel Reversible Hydrogen Storage Materials. Journal of Alloys and Com-pounds, 253, 1-9.
https://doi.org/10.1016/S0925-8388(96)03049-6
[14]  Yao, Y. and Klug, D.D. (2012) High-Pressure Phases of Lithium Borohydride LiBH 4: A First-Principles Study. Physical Review B, 86, Article ID: 064107.
https://doi.org/10.1103/PhysRevB.86.064107
[15]  Lindemann, I., Borgschulte, A., Callini, E., Züttel, A., Schultz, L. and Gutfleisch, O. (2013) Insight into the Decomposition Pathway of the Complex Hydride Al3Li4(BH4)13. International Journal of Hydrogen Energy, 38, 2790-2795.
https://doi.org/10.1016/j.ijhydene.2012.12.012
[16]  Duan, D., Huang, X., Tian, F., Li, D., Yu, H., Liu, Y., Cui, T., et al. (2015) Pressure-Induced Decomposition of Solid Hydrogen Sulfide. Physical Review B, 91, Article ID: 180502.
https://doi.org/10.1103/PhysRevB.91.180502
[17]  Bridgman, P.W. (1952) Physics of High Pressure.
[18]  Born, M. and Huang, K. (1954) Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford.
[19]  Hartree, D.R. (1928) The Wave Mechanics of an Atom with a Non-Coulomb Central Field Part I Theory and Methods. Mathematical Pro-ceedings of the Cambridge Philosophical Society, 24, 89-110.
https://doi.org/10.1017/S0305004100011919
[20]  Chandrasekar, N. (2012) Quantum Mechanics of Photons. Ad-vanced Studies in Theoretical Physics, 6, 391-397.
[21]  Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864.
https://doi.org/10.1103/PhysRev.136.B864
[22]  Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations In-cluding Exchange and Correlation Effects. Physical Review, 140, A1133.
https://doi.org/10.1103/PhysRev.140.A1133
[23]  Oganov, A.R. and Glass, C.W. (2006) Crystal Structure Predic-tion Using ab Initio Evolutionary Techniques: Principles and Applications. The Journal of Chemical Physics, 124, Article ID: 244704.
https://doi.org/10.1063/1.2210932
[24]  Lyakhov, A.O., Oganov, A.R., Stokes, H.T. and Zhu, Q. (2013) New Developments in Evolutionary Structure Prediction Algorithm USPEX. Computer Physics Communications, 184, 1172-1182.
https://doi.org/10.1016/j.cpc.2012.12.009
[25]  Bushlanov, P.V., Blatov, V.A. and Oganov, A.R. (2019) Topolo-gy-Based Crystal Structure Generator. Computer Physics Communications, 236, 1-7.
https://doi.org/10.1016/j.cpc.2018.09.016
[26]  Schwarz, K., Blaha, P. and Madsen, G.K. (2002) Electronic Struc-ture Calculations of Solids Using the WIEN2k Package for Material Sciences. Computer Physics Communications, 147, 71-76.
https://doi.org/10.1016/S0010-4655(02)00206-0
[27]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) General-ized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865.
https://doi.org/10.1103/PhysRevLett.77.3865
[28]  Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Dal Corso, A., et al. (2009) Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter, 21, Article ID: 395502.
https://doi.org/10.1088/0953-8984/21/39/395502

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133