全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Functional Kernel Estimation of the Conditional Extreme Quantile under Random Right Censoring

DOI: 10.4236/ojs.2021.111009, PP. 162-177

Keywords: Kernel Estimator, Functional Data, Censored Data, Conditional Extreme Quantile, Heavy-Tailed Distributions

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many investigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a heavy-tailed distribution is discussed when some functional random covariate (i.e. valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.

References

[1]  Gardes, L. and Girard, S. (2010) Conditional Extremes from Heavy-Tailed Distributions: An Application to the Estimation of Extreme Rainfall Return Levels. Extremes, 13, 177-204.
https://doi.org/10.1007/s10687-010-0100-z
[2]  Ndao, P. (2015) Modélisation de valeurs extrêmes conditionnelles en présence de censure. PhD Thesis, Université Gaston Berger de Saint-Louis.
[3]  Fisher, R.A. and Tippett, L.C. (1928) Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 180-190.
https://doi.org/10.1017/S0305004100015681
[4]  Gnedenko, B. (1943) Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics, 44, 423-453.
https://doi.org/10.2307/1968974
[5]  Daouia, A., Gardes, L., Girard, S. and Lekine, A. (2011) Kernel Estimators of Extreme Level Curves. Test, 20, 311-333.
https://doi.org/10.1007/s11749-010-0196-0
[6]  Gardes, L. and Girard, S. (2012) Functional Kernel Estimators of Large Conditional Quantiles. Electronic Journal of Statistics, 6, 1715-1744.
https://doi.org/10.1214/12-EJS727
[7]  Stupfler, G. (2016) Estimating the Conditional Extreme-Value Index under Random Right-Censoring. Journal of Multivariate Analysis, 144, 1-24.
https://doi.org/10.1016/j.jmva.2015.10.015
[8]  Ndao, P., Diop, A. and Dupuy, J.F. (2016) Nonparametric Estimation of the Conditional Extreme-Value Index with Random Covariates and Censoring. Journal of Statistical Planning and Inference, 168, 20-37.
https://doi.org/10.1016/j.jspi.2015.06.004
[9]  Beirlant, J., Guillou, A., Dierckx, G. and Fils-Villetard, A. (2007) Estimation of the Extreme Value Index and Extreme Quantiles under Random Censoring. Extremes, 10, 151-174.
https://doi.org/10.1007/s10687-007-0039-x
[10]  Einmahl, J.H., Fils-Villetard, A. and Guillou, A. (2008) Statistics of Extremes under Random Censoring. Bernoulli, 14, 207-227.
https://doi.org/10.3150/07-BEJ104
[11]  Brahimi, B., Meraghni, D. and Necir, A. (2013) On the Asymptotic Normality of Hill’s Estimator of the Tail Index under Random Censoring.
[12]  Gomes, M.I. and Neves, M.M. (2010) A Note on Statistics of Extremes for Censoring Schemes on a Heavy Right Tail. 32nd IEEE International Conference on Information Technology Interfaces, Cavtat, 21-24 June 2010, 539-544.
[13]  Cabras, S. and Castellanos, M.E. (2011) A Bayesian Approach for Estimating Extreme Quantiles under a Semiparametric Mixture Model. ASTIN Bulletin, 41, 87-106.
[14]  Coles, S.G. and Powell, E.A. (1996) Bayesian Methods in Extreme Value Modelling: A Review and New Developments. International Statistical Review, 64, 119-136.
https://doi.org/10.2307/1403426
[15]  Stephenson, A. and Tawn, J. (2004) Bayesian Inference for Extremes: Accounting for the Three Extremal Types. Extremes, 7, 291-307.
https://doi.org/10.1007/s10687-004-3479-6
[16]  Worms, J. and Worms, R. (2014) New Estimators of the Extreme Value Index under Random Right Censoring, for Heavy-Tailed Distributions. Extremes, 17, 337-358.
https://doi.org/10.1007/s10687-014-0189-6
[17]  Gomes, M.I. and Neves, M.M. (2011) Estimation of the Extreme Value Index for Randomly Censored Data. Biometrical Letters, 48, 1-22.
[18]  Matthys, G., Delafosse, E., Guillou, A. and Beirlant, J. (2004) Estimating Catastrophic Quantile Levels for Heavy-Tailed Distributions. Insurance: Mathematics and Economics, 34, 517-537.
https://doi.org/10.1016/j.insmatheco.2004.03.004
[19]  Gonzalez-Manteiga, W. and Cadarso-Suarez, C. (1994) Asymptotic Properties of a Generalized Kaplan-Meier Estimator with Some Applications. Communications in Statistics—Theory and Methods, 4, 65-78.
https://doi.org/10.1080/10485259408832601
[20]  Nadaraya, E.A. (1964) On Estimating Regression. Theory of Probability & Its Applications, 9, 141-142.
https://doi.org/10.1137/1109020
[21]  Watson, G.S. (1964) Smooth Regression Analysis. Sankhyā: The Indian Journal of Statistics, Series A, 26, 359-372.
[22]  Gardes, L. and Girard, S. (2008) A Moving Window Approach for Nonparametric Estimation of the Conditional Tail Index. Journal of Multivariate Analysis, 99, 2368-2388.
https://doi.org/10.1016/j.jmva.2008.02.023
[23]  Goegebeur, Y., Guillou, A. and Schorgen, A. (2014) Nonparametric Regression Estimation of Conditional Tails: The Random Covariate Case. Statistics, 48, 732-755.
https://doi.org/10.1080/02331888.2013.800064
[24]  Gardes, L., Girard, S. and Lekina, A. (2010) Functional Nonparametric Estimation of Conditional Extreme Quantiles. Journal of Multivariate Analysis, 101, 419-433.
https://doi.org/10.1016/j.jmva.2009.06.007
[25]  Rutikanga, J. and Diop, A. (2020) Functional Kernel Estimation of the Conditional Extreme Value Index under Random Right Censoring.
https://hal.archives-ouvertes.fr/hal-02955521
[26]  Chaouch, M. and Khardani, S. (2015) Randomly Censored Quantile Regression Estimation Using Functional Stationary Ergodic Data. Journal of Nonparametric Statistics, 27, 65-87.
https://doi.org/10.1080/10485252.2014.982651
[27]  Ferraty, F. and Vieu, P. (2006) Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics). Springer-Verlag, Berlin.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133