全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural and Elastic Behavior of Chromium Doped Pr0.5Sr0.5MnO3 System

DOI: 10.4236/anp.2021.101002, PP. 26-35

Keywords: CMR Materials, Resistivity, Ultrasonic Velocity, Elastic Moduli

Full-Text   Cite this paper   Add to My Lib

Abstract:

A series of colossal magneto resistance (CMR) materials with compositional formula Pr0.5Sr0.5Mn1-xCrxO3 (x = 0, 0.1, 0.2, 0.3, 0.4) were prepared by sol-gel technique using pure metal nitrates as the starting materials. These samples were characterized structurally by X-ray diffraction, FTIR and SEM. All the samples exhibit orthorhombic structure without any detectable impurities. The bulk densities for all the compositions were measured from the pellets. The Young’s and Rigidity moduli, Poisson’s ratio and Debye temperature of all the compositions were calculated with the experimentally measured ultrasonic longitudinal and shear velocities at room temperature using pulse transmission technique. As the materials are porous, zero porous elastic moduli have also been calculated using a well-known Hasselmann and Fulrath model. The observed variation of elastic moduli with varying chromium doping concentration has been studied qualitatively.

References

[1]  Zener, C. (1951) Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Physical Review Journals Archive, 82, 403-405.
https://doi.org/10.1103/PhysRev.82.403
[2]  Millis, A.J., Shraiman, B.I. and Mueller, R. (1996) Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La11-xSrxMnO3. Physical Review Letters, 77, 175-178.
https://doi.org/10.1103/PhysRevLett.77.175
[3]  Dagotto, E., Hotta, T. and Moreo, A. (2001) Colossal Magnetoresistant Materials: The Key Role of Phase Separation. Physics Reports, 344, 1-153.
https://doi.org/10.1016/S0370-1573(00)00121-6
[4]  Tokura, Y. (2006) Critical Features of Colossal Magnetoresistive Manganites. Reports on Progress in Physics, 69, 797-851.
https://doi.org/10.1088/0034-4885/69/3/R06
[5]  Hatano, T. (2013) Gate Control of Electronic Phases in a Quarter-Filled Manganite. Scientific Reports, 3, Article No. 2904.
https://doi.org/10.1038/srep02904
[6]  Jin, S., Tiefel, H., Mc Cornack, M., Fastnacht, R.A., Ramesh, R. and Chen, L.H. (1994) Thousand Fold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Sci- ence, 264, 413-415.
https://doi.org/10.1126/science.264.5157.413
[7]  Autret, C., Maignan, A., Martin, C., Hervieu, M., Hardy, V., Hebert, S. and Raveau, B. (2003) Magnetization Steps in a Noncharge-Ordered Manganite, Pr0.5Ba0.5MnO3. Applied Physics Letters, 82, 4746-4748.
https://doi.org/10.1063/1.1588756
[8]  Raveau, B., Maignan, A. and Martin, C. (1997) Insulator-Metal Transition Induced by Cr and Co Doping in Pr0.5Ca0.5MnO3. Journal of Solid State Chemistry, 130, 162-166.
https://doi.org/10.1006/jssc.1997.7373
[9]  Kimura, T., Tomioka, Y., Okimoto, Y. and Tokura, Y. (1999) Diffuse Phase Transition and Phase Separation in Cr-Doped Nd1/2Ca1/2MnO3: A Relaxor Ferromagnet. Physical Review Letters, 83, 3940-3943.
https://doi.org/10.1103/PhysRevLett.83.3940
[10]  Barnabe, A., Maignan, A., Hervieu, M., Damay, F., Martin, C. and Raveau, B. (1997) Extension of Colossal Magnetoresistance Properties to Small a Site Cations by Chromium Doping in Ln0.5Ca0.5MnO3 Manganites. Applied Physics Letters, 71, 3907- 3909.
https://doi.org/10.1063/1.120540
[11]  Kimura, T., Kumai, R., Okimoto, Y., Tomioka, Y. and Tokura, Y. (2000) Variation of Charge-Orbital Correlation with Cr Doping in Manganites. Physical Review B, 62, 15021-15025.
https://doi.org/10.1103/PhysRevB.62.15021
[12]  Sun, Y., Tong, W., Xu, X.J. and Zhang, Y.H. (2001) Tuning Colossal Magnetoresistance Response by Cr Substitution in La0.67Sr0.33MnO3. Applied Physics Letters, 78, 643-645.
https://doi.org/10.1063/1.1344229
[13]  Lalitha, G., Das, D., Bahadur, D. and Venugopal Reddy, P. (2008) Elastic Behavior of La0.67Ca0.33MnO3:ZrO2 Composites. Journal of Alloys and Compounds, 464, 6-8.
https://doi.org/10.1016/j.jallcom.2007.09.097
[14]  Buch, J.J.U., Lalitha, G., Pathak, T.K., Vasoya, N.H., Lakhani, V.K., Reddy, P.V., Kumar, R. and Modi, K.B. (2008) Structural and Elastic Properties of Ca-Substituted LaMnO3 at 300K. Journal of Physics D: Applied Physics, 41, Article ID: 025406.
https://doi.org/10.1088/0022-3727/41/2/025406
[15]  Wollan, E.O. and Koehler, W.C. (1955) Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3. Physical Review Journals Archive, 100, 545-563.
https://doi.org/10.1103/PhysRev.100.545
[16]  Lalitha, G. and Venugopal Reddy, P. (2008) Elastic Behavior of Some Manganite- Based Orthorhombic RMnO3 (R = Sm, Eu, Gd, Dy) Multiferroics. Journal of Magnetism and Magnetic Materials, 320, 152-157.
https://doi.org/10.1016/j.jmmm.2007.08.014
[17]  Young, R.A. (1993) Introduction to the Rietveld Method. In: Young, R.A., Ed., The Rietveld Method, Oxford University Press, Oxford, 1-38.
[18]  Lalitha, G., Pavan Kumar, N. and Venugopal Reddy, P. (2018) Influence of Chromium Doping on Electrical and Magnetic Behavior of Nd0.5Sr0.5MnO3 System. Journal of Low Temperature Physics, 192, 133-144.
https://doi.org/10.1007/s10909-018-1922-3
[19]  Lu, C.L., Ni, H., Yang, M., Xia, S.C., Wang, H.W., Wang, J.F. and Xia, Z.C. (2014) High Magnetic Field Phase Diagram in Electron-Doped Manganites
La(0.4)Ca(0.6)Mn(1-y)Cr(y)O3. Scientific Reports, 4, Article No. 4902.
https://doi.org/10.1038/srep04902
[20]  Lalitha, G. and Venugopal Reddy, P. (2009) Ultrasonic Velocity Studies in the Vicinity of TC of Bismuth Doped Manganites. Journal of Physics: Condensed Matter, 21, Article ID: 056003.
https://doi.org/10.1088/0953-8984/21/5/056003
[21]  Lalitha, G. and Venugopal Reddy, P. (2009) Elastic Behaviour of Strontium-Doped Lanthanum Calcium Manganites in the Vicinity of TC. Journal of Physics and Chemistry of Solids, 70, 960-966.
https://doi.org/10.1016/j.jpcs.2009.05.005
[22]  Anderson, O.L. (1965) 2-Determination and Some Uses of Isotropic Elastic Constants of Polycrystalline Aggregates Using Single-Crystal Data. In: Mason, W.P., Ed., Physical Acoustics, Vol. IIIB, Academic Press, New York, 43.
https://doi.org/10.1016/B978-0-12-395669-9.50009-6
[23]  Wooster, W.A. (1953) Physical Properties and Atomic Arrangements in Crystals. Reports on Progress in Physics, 16, 62-82.
https://doi.org/10.1088/0034-4885/16/1/302

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133