全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence Functions for Risk and Performance Estimators

DOI: 10.4236/jmf.2021.111002, PP. 15-47

Keywords: Influence Functions, Risk Estimator, Performance Estimator, Asymptotic Variance, Standard Errors

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new general method for computing standard errors of risk and performance estimators is developed. The method relies on the fact that the influence function of an estimator, the Gateaux derivative of the estimator functional in the direction of point mass distributions, may be used to represent the asymptotic variance of the estimator as the expected value of the squared influence function. The law of large numbers shows that the asymptotic variance of an estimator can be estimated as the time series average of the squared influence function, thereby yielding a very simple estimator standard error calculation that does not require knowledge of the asymptotic variance formula. We derive formulas for the influence functions of six risk estimators and seven performance estimators, thereby providing a convenient portfolio performance and risk management tool to easily compute standard errors for most risk and performance estimators of interest or practical importance. We conduct a simulation study to evaluate the quality of the standard errors and confidence interval error rates for the Sharpe ratio and downside Sharpe ratio estimators. Software implementations of our proposed method in the R packages RPEIF and RPESE are publicly available on CRAN.

References

[1]  Hampel, F.R. (1974) The Influence Curve and Its Role in Robust Estimation. Journal of the American Statistical Association, 69, 383-393.
https://doi.org/10.1080/01621459.1974.10482962
[2]  Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986) Robust Statistics: The Approach Based on Influence Functions. Wiley, Hoboken.
[3]  Maronna, R.A., Martin, R.D., Yohai, V.J. and Salibian-Barrera, M. (2019) Robust Statistics: Theory and Methods (with R). Wiley, Hoboken.
[4]  Yamai, Y. and Yoshiba, T. (2002) Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization. Monetary and Economic Studies, 87-121.
[5]  Scherer, B. and Martin, R.D. (2005) Introduction to Modern Portfolio Optimization with NUOPT and S-PLUS. Springer, New York.
https://doi.org/10.1007/978-0-387-27586-4
[6]  De Miguel, V. and Nogales, F.J. (2009) Portfolio Selection with Robust Estimation. Operations Research, 57, iv-799. https://doi.org/10.1287/opre.1080.0566
[7]  Cont, R., Deguest, R. and Scandolo, G. (2010) Robustness and Sensitivity Analysis of Risk Measurement Procedures. Quantitative Finance, 10, 593-606.
https://doi.org/10.1080/14697681003685597
[8]  Martin, R.D. and Zhang, S.Y. (2019) Nonparametric Versus Parametric Expected Shortfall. Journal of Risk, 21, 1-41. https://ssrn.com/abstract=2747179
https://doi.org/10.21314/JOR.2019.416
[9]  De Capitani, L. (2014) Interval Estimation for the Sortino Ratio and the Omega Ratio. Communications in Statistics, 43, 1385-1429.
https://doi.org/10.1080/03610918.2012.722808
[10]  De Capitani, L. and Pasquazzi, L. (2015) Inference for Performance Measures for Financial Assets. METRON, 73, 73-98. https://doi.org/10.1007/s40300-014-0055-y
[11]  Fernholz, L.T. (1983) Von Mises Calculus for Statistical Functionals. Vol. 19, Springer, New York. https://doi.org/10.1007/978-1-4612-5604-5
[12]  McNeil, A.J., Frey, R. and Embrechts, P. (2015) Quantitative Risk Management: Concepts, Techniques and Tools-Revised Edition. Princeton University Press, Princeton.
[13]  Fishburn, P. (1977) Mean-Risk Analysis with Risk Associate with Below-Target Returns. The American Economic Review, 67, 116-126.
[14]  Krokhmal, P.A. (2007) Higher Moment Coherent Risk Measures. Quantitative Finance, 7, 373-387. https://doi.org/10.1080/14697680701458307
[15]  Ziemba, W. (2005) The Symmetric Downside-Risk Sharpe Ratio. Journal of Portfolio Management, 32, 108-122. https://doi.org/10.3905/jpm.2005.599515
[16]  Sortino, F.A. and van der Meer, R.A.H. (1991) Downside Risk. Journal of Portfolio Management, 17, 27-31. https://doi.org/10.3905/jpm.1991.409343
[17]  Sortino, F.A. and Price, L.N. (1994) Performance Measurement in a Downside Risk Framework. Journal of Investing, 3, 59-64. https://doi.org/10.3905/joi.3.3.59
[18]  Sortino, F.A. and Forsey, H.J. (1996 On the Use and Misuse of Downside Risk. Journal of Portfolio Management, 22, 35-42. https://doi.org/10.3905/jpm.1996.35
[19]  Martin, R.D., Rachev, S.Z. and Siboulet, F. (2003) Phi-alpha Optimal Portfolios and Extreme Risk Management. The Best of Wilmott 1: Incorporating the Quantitative Finance Review, 1, 70-83.
[20]  Favre, L. and Galeano, J. (2002) Mean-Modified Value-at-Risk Optimization with Hedge Funds. The Journal of Alternative Investment, 5, 21-25.
https://doi.org/10.3905/jai.2002.319052
[21]  Biglova, A., Ortobelli, S., Rachev, Z. and Stoyano, S. (2004) Different Approaches to Risk Estimation in Portfolio Theory. Journal of Portfolio Management, 31, 103-112.
https://doi.org/10.3905/jpm.2004.443328
[22]  Stoyanov, S.V., Rachev, S.T. and Fabozzi, F.J. (2007) Optimal financial Portfolios. Applied Mathematical Finance, 14, 401-436.
https://doi.org/10.1080/13504860701255292
[23]  Keating, C. and Shadwick, W.F. (2002) A Universal Performance Measure. Journal of Performance Measurement, 6, 59-84.
[24]  Mertens, E. (2002) Comments on the Correct Variance of Estimated Sharpe Ratios in Lo (2002, FAJ) When Returns Are IID. http://www.elmarmertens.org/
[25]  Brillinger, D.R. (1962) A Note on the Rate of Convergence of a Mean. Biometrika 49, 574-576. https://doi.org/10.1093/biomet/49.3-4.574
[26]  Chen, X. and Martin, R.D. (2021) Standard Errors of Risk and Performance Measure Estimators for Serially Correlated Returns. Journal of Risk, 23, 1-41.
https://doi.org/10.21314/JOR.2020.446
[27]  Christidis, A.A. and Chen, X. (2019) RPESE R Package Manual and Vignette.
https://cran.r-project.org/web/packages/RPESE
[28]  Stoyanov, S.V. and Rachev, S.T. (2008) Asymptotic Distribution of the Sample Average Value-at-Risk. Journal of Computational Analysis and Applications, 3, 443-461.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133