全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Applications of Normality Test in Statistical Analysis

DOI: 10.4236/ojs.2021.111006, PP. 113-122

Keywords: Normality Test, Univariate Test, Multivariate Test

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, to power comparison test, different univariate normality testing procedures are compared by using new algorithm. Different univariate and multivariate test are also analyzed here. And also review efficient algorithm for calculating the size corrected power of the test which can be used to compare the efficiency of the test. Also to test the randomness of generated random numbers. For this purpose, 1000 data sets with combinations of sample size n = 10, 20, 25, 30, 40, 50, 100, 200, 300 were generated from uniform distribution and tested by using different tests for randomness. The assessment of normality using statistical tests is sensitive to the sample size. Observed that with the increase of n, overall powers are increased but Shapiro Wilk (SW) test, Shapiro Francia (SF) test and Andeson Darling (AD) test are the most powerful test among other tests. Cramer-Von-Mises (CVM) test performs better than Pearson chi-square, Lilliefors test has better power than Jarque Bera (JB) Test. Jarque Bera (JB) Test is less powerful test among other tests.

References

[1]  Andrews, D., Gnanadesikan, R. and Warner, J. (1973) Methods for Assessing Multivariate Normality. In: Krishnaiah, P.R., Ed., Proceedings of the International Symposium on Multivariate Analysis, 3, 95-116.
https://doi.org/10.1016/B978-0-12-426653-7.50012-0
[2]  Conover, W.J. (1999) Practical Nonparametric Statistics. Third Edition, John Wiley & Sons, New York.
[3]  Gray, P., Kalotay, E. and McIvor, J. (1998) Testing the Multivariate Normality of Australian Stock Returns. Australian Journal of Management, 23, 135-150.
https://doi.org/10.1177/031289629802300201
[4]  Kankainen, A., Taskinen, S. and Oja, H. (2003) On Mardia’s Tests of Multinormality. Conference Paper, 2 May 2003.
[5]  Koizumi, K., Okamoto, N. and Seo, T. (2009) On Jarque-Bera Tests for Assessing Multivariate Normality. Journal of Statistics: Advances in Theory and Applications, 1, 207-220.
[6]  Pearson, E.S., D’Agostino, R.B. and Bowman, K.O. (1977) Tests for Departure from Normality: Comparison of Powers. Biometrika, 64, 231-246.
https://doi.org/10.1093/biomet/64.2.231
[7]  Johnson, R.A. and Wichern, D.W. (2015) Applied Multivariate Statistical Analysis, 6th Edition, Pearson, India.
[8]  Shapiro, S.S., Wilk, M.B. and Chen, H.J. (1968) A Comparative Study of Various Tests of Normality. Journal of the American Statistical Association, 63, 1343-1372.
https://doi.org/10.1080/01621459.1968.10480932

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133