全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of the Relative Variations of the Thermal Properties and Crystallinity of Blends (PP/EPR)/Calcium Carbonate

DOI: 10.4236/mnsms.2021.111002, PP. 19-33

Keywords: DSC, PP/EPR, CaCO3, Crystallinity, Micro Bivis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of this paper is to investigate the relative variations of the constants of the thermal properties and the degree of crystallinity of the mixtures (PP/EPR)/Calcium carbonates elaborated with the Micro Bivis. We have strengthened the basic copolymer PP/EPR of a low level (5%) by three calcium carbonates models socal312, socal322v, Winnofil spm. We then subjected the different mixtures obtained, two cycles of a thermal loading under differential scanning calorimetry DSC. We finally focused on the thermal properties of isotactic polypropylene (TfP, TcP, ΔHfP, ΔHcP) and we calculated the degree of crystallinity of the mixtures. Reducing the energy cost of implementing mixtures is one of the objectives of this work. We quantified the relative variations of the above properties with those of the base copolymer. It shows that at a low loading rate of calcium carbonate, there is a decrease in the enthalpies of crystallization during the second exothermic cycle, with values that can reach 5.53 J/gPP for the basic copolymer PP/EPR. During the second endothermic cycle, there is an overall increase in isotactic polypropylene melting temperature values for all the blends as well as for the basic copolymer PP/EPR. There is evidence that calcium carbonates are useful for lowering the melting energy of isotactic polypropylene, even at a low loading rate for the majority. The number of endothermic cycles accentuates this phenomenon which is linked to the presence in our composites, of a so-called confined amorphous phase.

References

[1]  Wang, K., Wu, J., Ye, L. and Zeng, H. (2003) Mechanical Properties and Toughening Mechanisms of Polypropylene/Barium Sulfate Composites. Composites Part A, 34, 1199-1205.
https://doi.org/10.1016/j.compositesa.2003.07.004
[2]  Noah, P. M., Ayina Ohandja, L., Eba Medjo, R., Chabira, S., Betene Ebanda, F. and Anyouzoa Ondoua, P. (2016) Study of Thermal Properties of Mixed (PP/EPR)/ABS with Five Model Compatibilizers. Journal of Engineering, 2016, Article ID: 8539694.
https://doi.org/10.1155/2016/8539694
[3]  Anicet, N.P.M., Louis-Max, A.O., Roland, E.M., Salem, C. and Merlin, A.Z. (2015) Study of Thermal Properties of Mixed (PP/EPR)/Calcium Carbonates. Indian Journal of Science & Technology, 8, Article ID: 51675.
https://doi.org/10.17485/ijst/2015/v8i11/71771
[4]  Rong M.Z., Zang, M.Q., Zheng, Y.X., Zeng, H.M. and Friedrich, K. (2001) Improvement of Tensile Properties of Nano-SiO2/PP Composites in Relation to Percolation Mechanism. Polymer, 42, 3301-3304.
https://doi.org/10.1016/S0032-3861(00)00741-2
[5]  Hasegawa, N., Okamoto, H., Kato, M. and Usiki, A. (2000) Preparation and Mechanical Properties of Polypropylene-Clay Hybrids Based on Modified Polypropylene and Organophilic Clay. Journal of Applied Polymer Science, 78, 1918-1922.
https://doi.org/10.1002/1097-4628(20001209)78:11<1918::AID-APP100>3.0.CO;2-H
[6]  Ellis, B. and Smith, R. (2008) Polymers: A Property Database. 2nd Edition, CRC Press, London.
[7]  Pukanszky, B. (1995) Particulate Filled Polypropylene: Structure and Properties. In: Karger-Kocsis, J., Ed., Polypropylene: Structure, Blends and Composites, Springer, Dordrecht.
https://doi.org/10.1007/978-94-011-0523-1_1
[8]  Bartczak, Z., Argon, A.S., Cohen, R.E. and Weinberg, M (1999) Toughness, Mechanism in Semi Crystalline Polymer Blends: Part 2. High-Density Polyethylene Toughened with Calcium Carbonate Filler Particles. Polymer, 40, 2347-2365.
https://doi.org/10.1016/S0032-3861(98)00444-3
[9]  Wang, C., Xian, Y., Cheng, H., Li, W. and Zhang, S. (2015) Tensile Properties of Bamboo Fiber-Reinforced Polypropylene Composites Modified by Impregnation with Calcium Carbonate Nanoparticles. BioRes, 10, 6783-6796.
https://doi.org/10.15376/biores.10.4.6783-6796
[10]  Pukanszky, B., Belina, K., Rockenbauer, A. and Maurer, F.H.J. (1994) Effect of Nucleation, Filler Anisotropy and Orientation on the Properties of PP Composites. Composites, 25, 205-214.
https://doi.org/10.1016/0010-4361(94)90018-3
[11]  Zebarjad, S.M., Sajjadi, S.A. and Tahani, M. (2006) Modification of Fracture Toughness of Isotactic Polypropylene with a Combination of EPR and CaCO3 Particles. Journal of Materials Processing Technology, 175, 446-451.
https://doi.org/10.1016/j.jmatprotec.2005.04.043
[12]  Nguyen, T.L. (2014) Approche multi-échelles dans les matériaux polymères: de la caractérisation nanométrique aux effets d’échelles. Thèse de Doctorat de l’Université de Technologie de Compiègne.
https://tel.archives-ouvertes.fr/tel-01127516
[13]  Oudet, C. (1993) Polymères: Structure et propriétés: Introduction. Editor MASSON, 249.
[14]  G’sell, C. and Haudin, J.M. (1995) Introduction à la mécanique des polymers. Presses de l’Institut National Polytechnique de Lorraine.
[15]  David, L. and Etienne, S. (2002) Introduction à la physique des polymers. Dunod Edition.
[16]  Combette, P. and Ernoult, I. (2006) Physique des polymères I: Structure. Fabrication, Emploi, Hermann Editeurs.
[17]  NOAH Pierre Marcel Anicet (2017) Contribution à l’étude comportementale sous contraintes thermiques des polymères et copolymères modèles renforces, Thèse de Doctorat/PhD, Université de Douala.
[18]  
http://coatings.specialchem.com/product/a-solvay-socal-312#
[19]  
http://coatings.specialchem.com/product/a-solvay-socal-322-v
[20]  
http://coatings.specialchem.com/product/a-solvay-winnofil-spm
[21]  Haudin, J.M. and Monasse, B. (1996) Cristallisation des polymères, chapitre 7. In: Groupe Francais d’études et d’applications des polymers, Initiation à la chimie et à la physicochimie macromoléculaire, Volume 10, 229-287.
[22]  Greco, R., Manacarella, C., Martuscelli, E. and Ragosta, G. (1987) Polyolefin Blends: 2: Effect of epr Composition on Structure, Morphology and Mechanical Properties of ipp/epr Alloys. Polymer, 28, 1929-1936.
https://doi.org/10.1016/0032-3861(87)90302-8
[23]  Shoinaike, G.O. and Kiat, T.H. (1998) Studies on Miscibility of Uncompatibilized Nylon 66 Santoprene Blends. Journal of Applied Polymer Science, 68, 1285-1295.
https://doi.org/10.1002/(SICI)1097-4628(19980523)68:8<1285::AID-APP10>3.0.CO;2-Z
[24]  Noah, P.M.A., Ayina Ohandja, L.-M., Eba Medjo, R. and Chabira S. (2016) Analysis of Thermal Properties of Mixed (PP/EPR)/Calcium Carbonates. In Book: Advances in Natural and Life Sciences Volume: I, Edition: United Scholars Publications, Chapter: 4, United Scholars Publications, USA.
[25]  Srivabut, C., Ratanawilai, T. and Hiziroglu, S. (2019) Response Surface Optimization and Statistical Analysis of Composites Made from Calcium Carbonate Filler-Added Recycled Polypropylene and Rubberwood Fiber. Journal of Thermoplastic Composite Materials, 2019, 1-25.
https://doi.org/10.1177/0892705719889988
[26]  Amalou, Z. (2006) Contribution à l’étude de la structure semi-cristalline des polymères à semi-rigides. Thèse, Bruxelles.
[27]  Wunderlich (2003) Reversible Crystallization and the Rigid-Amorphous Phase in Semicrystalline Macromolecules. Progress in Polymer Science, 28, 383.
https://doi.org/10.1016/S0079-6700(02)00085-0
[28]  Menczel, J.D. (1999) Crystal Perfection of Poly(p-Phenylene Sulfide) during Cooling Using Temperature-Modulated DSC. Journal of Thermal Analysis and Calorimetry, 58, 517-523.
https://doi.org/10.1023/A:1010131906744
[29]  Hong, P.-D., Chuang, W.-T., Yeh, W.-J. and Lin, T.-L. (2002) Effect of Rigid Amorphous Phase on Glass Transition Behavior of Poly (Trimethylene Terephthalate). Polymer, 43, 6879-6886.
https://doi.org/10.1016/S0032-3861(02)00617-1
[30]  Menczel, J.D. and Jaffe, M. (2007) How Did We Find the Rigid Amorphous Phase? J Therm Anal Calorim, 89, 357-362.
https://doi.org/10.1007/s10973-006-8292-9
[31]  Menczel, J. and Wunderlich, B. (1980) Phase Transitions in Mesophase Macromolecules. I. Novel Behavior in the Vitrification of Poly(Ethylene terephthalate-co-p-oxybenzoate). Journal of Polymer Science: Polymer Physics Edition, 18, 1433-1438.
https://doi.org/10.1002/pol.1980.180180621
[32]  Menczel, J. and Wunderlich, B. (1981) Heat Capacity Hysteresis of Semicrystalline Macromolecular Glasses. Journal of Polymer Science: Polymer Letters Edition, 19, 261-264.
https://doi.org/10.1002/pol.1981.130190506
[33]  Menczel, J. and Wunderlich, B. (1981) Phase Transitions in Mesophase Macromolecules: The Transitions of Poly(p-acryloyloxybenzoic Acid). Polymer, 22, 778-782.
https://doi.org/10.1016/0032-3861(81)90014-8
[34]  Meesiri, W., Menczel, J., Gaur, U. and Wunderlich, B. (1982) Phase Transitions in Mesophase Macromolecules. III. The Transitions in Poly(ethylene terephthalate-co-p-oxybenzoate). Journal of Polymer Science: Polymer Physics Edition, 20, 719-728.
https://doi.org/10.1002/pol.1982.180200413
[35]  Xu, H. and Cebe, P. (2004) Heat Capacity Study of Isotactic Polystyrene: Dual Reversible Crystal Melting and Relaxation of Rigid Amorphous Fraction. Macromolecules, 37, 2797.
https://doi.org/10.1021/ma035961n
[36]  Alsleben, M. and Schick, C. (1994) The Melting of Polymers—A Three-Phase Approach. Thermochimica Acta, 238, 203-227.
https://doi.org/10.1016/S0040-6031(94)85211-1
[37]  Pukanszky, B., Belina, K., Rockenbauer, A. and Maurer, F.H.J. (1994) Effect of Nucleation, Filler Anisotropy and Orientation on the Properties of PP Composites. Composites, 25, 205-214.
https://doi.org/10.1016/0010-4361(94)90018-3
[38]  Hartikainen, J., Hine, P., Szabó, J.S., Lindner, M., Harmia, T., Duckett, R.A. and Friedrich, K. (2005) Polypropylene Hybrid Composites Reinforced with Long Glass Fibres and Particulate Filler. Composites Science and Technology, 65, 257-267.
https://doi.org/10.1016/j.compscitech.2004.07.010
[39]  Labour, T. (1999) Microstructure et comportement mécanique du polypropylène chargé. Thèse de Doctorat, Institut National des Sciences Appliquées de Lyon.
http://www.theses.fr/1999ISAL0012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133