A heuristic stochastic solution of the Pennes equation is developed in this paper by applying the self-organizing, self-similar behaviour of living structures. The stochastic solution has a probability distribution that fits well with the dynamic changes in the living objects concerned and eliminates the problem of the deterministic behaviour of the Pennes approach. The solution employs the Weibull two-parametric distribution which offers satisfactory delivery of the rate of temperature change by time. Applying the method to malignant tumours obtains certain benefits, increasing the efficacy of the distortion of the cancerous cells and avoiding doing harm to the healthy cells. Due to the robust heterogeneity of these living systems, we used thermal and bioelectromagnetic effects to distinguish the malignant defects, selecting them from the healthy cells. On a selective basis, we propose an optimal protocol using the provided energy optimally such that molecular changes destroy the malignant cells without a noticeable effect on their healthy counterparts.
References
[1]
Vaupel, P. and Hammersen, F. (1982) Mikrozirkulation in malignen Tumoren. Karger, Basel.
[2]
Vaupel, P. (1990) Pathophysiological Mechanism of Hyperthermia in Cancer Therapy. In: Gautherie, M., Ed., Methods of Hyperthermia Control, Biological Basis of Oncologic Thermotherapy. Clinical Thermology (Subseries Thermotherapy), Springer Verlag, Berlin, Heidelberg, 73-134. https://doi.org/10.1007/978-3-642-74939-1_2
[3]
Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and Cancer Research, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18
[4]
Vaupel, P., Kallinowski, F. and Okunieff, P. (1989) Blood Flow, Oxygen and Nutrient Supply, and Microenvironment of Human Tumours: A Review. Cancer Research, 49, 6449-6465.
[5]
Song, C.W., Choi, I.B., Nah, B.S., Sahu, S.K. and Osborn, J.L. (1995) Microvasculature and Perfusion in Normal Tissues and Tumours. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermoradiometry and Thermochemotherapy, Vol. 1, Springer-Verlag, Berlin Heidelberg, 139-156. https://doi.org/10.1007/978-3-642-57858-8_7
[6]
Takana, Y. (2001) Thermal Responses of Microcirculation and Modification of Tumour BF in Treating the Tumours. In: Kosaka, M., Sugahara, T., Schmidt, K.L. and Simon, E., Eds., Theoretical and Experimental Basis of Hyperthermia. Thermotherapy for Neoplasia, Inflammation, and Pain, Springer Verlag, Tokyo, 408-419. https://doi.org/10.1007/978-4-431-67035-3_45
[7]
Song, C.W., Park, H. and Griffin, R.J. (2001) Theoretical and Experimental Basis of Hyperthermia. In: Kosaka, M., Sugahara, T., Schmidt, K.L., et al., Eds., Thermotherapy for Neoplasia, Inflammation, and Pain, Springer Verlag, Tokyo, 394-407. https://doi.org/10.1007/978-4-431-67035-3_44
[8]
Wu, M., Frieboes, H.B., McDougall, S.R., et al. (2013) The Effect of Interstitial Pressure on Tumor Growth: Coupling with the Blood and Lymphatic Vascular Systems. Journal of Theoretical Biology, 320, 131-151. https://doi.org/10.1016/j.jtbi.2012.11.031
[9]
Song, C.W., Lokshina, A., Rhee, J.G., et al. (1984) Implication of BF in Hyperthermic Treatment of Tumours. IEEE Transactions on Biomedical Engineering, 31, 9-16. https://doi.org/10.1109/TBME.1984.325364
[10]
Jain, R.K. (1988) Determinants of Tumor Blood Flow: A Review. Cancer Research, 48, 2641-2658.
[11]
Song, C.W. (1984) Effect of Local Hyperthermia on Blood Flow and Microenvironment: A Review. Cancer Research (Suppl.), 44, 4721s-4730s.
[12]
Dudar, T.E. and Jain, R.K. (1984) Differential Response of Normal and Tumour Microcirculation to Hyperthermia. Cancer Research, 44, 605-612.
[13]
Hietanen, T., Kapanaen, M. and Kellokumpu-Legtinen, P.L. (2016) Restoring Natural Killer Cell Cytotoxicity after Hyperthermia Alone or Combined with Radiotherapy. Anticancer Research, 36, 555-564.
[14]
Beachy, S.H. and Repasky, E.A. (2011) Toward Establishment of Temperature Thresholds for Immunological Impact of Heat Exposure in Humans. International Journal of Hyperthermia, 27, 344-352. https://doi.org/10.3109/02656736.2011.562873
[15]
Jones, E., Thrall, D., Dewhirst, M.W. and Vujaskovic, Z. (2006) Prospective Thermal Dosimetry: The Key to Hyperthermia’s Future. International Journal of Hyperthermia, 22, 247-253. https://doi.org/10.1080/02656730600765072
[16]
Fatehi, D., van der Zee, J., van der Wal, E., et al. (2006) Temperature Data Analysis for 22 Patients with Advanced Cervical Carcinoma Treated in Rotterdam Using Radiotherapy, Hyperthermia and Chemotherapy: A Reference Point Is Needed. International Journal of Hyperthermia, 22, 353-363. https://doi.org/10.1080/02656730600715796
[17]
Separeto, S.A. and Dewey, W.C. (1984) Thermal Dose Determination in Cancer Therapy. International Journal of Radiation Oncology, Biology, Physics, 10, 787-800. https://doi.org/10.1016/0360-3016(84)90379-1
[18]
Arrhenius, S. (1915) Quantitative Laws in Biological Chemistry. G. Bell, London. https://doi.org/10.5962/bhl.title.22817
[19]
Jackson, M.B. (2006) Molecular and Cellular Biophysics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511754869
[20]
Nelson, P. (2004) Biological Physics. WH Freeman and Company, New York.
[21]
Perez, C.A. and Sapareto, S.A. (1984) Thermal Dose Expression in Clinical Hyperthermia and Correlation with Tumor Response/Control. Cancer Research, 44, 4818s-4825s.
[22]
Feo, F., Canuto, R.A. and Garcea, R. (1976) Lipid Phase Transition and Breaks in the Arrhenius Plots of Membrane-Bound Enzymes in Mitochondria from Normal Rat Liver and Hepatoma AH-130. FEBS Letters, 72, 262-266. https://doi.org/10.1016/0014-5793(76)80982-9
[23]
Overath, P., Schairer, H.U. and Stoffel, W. (1970) Correlation of in Vivo and in Vitro Phase Transitions of Membrane Lipids in Escherichia coli. Proceedings of the National Academy of Sciences, 67, 606-312. https://doi.org/10.1073/pnas.67.2.606
[24]
Watson, K., Bertoli, E. and Griffiths, D.E. (1975) Phase Transitions in Yeast Mithochondrial Membranes. Biochemical Journal, 146, 401-407. https://doi.org/10.1042/bj1460401
[25]
Dewey, W.C., Hopwood, L.E., Sapareto, S.A., et al. (1977) Cellular Response to Combination of Hyperthermia and Radiation. Radiology, 123, 463-474. https://doi.org/10.1148/123.2.463
Hafstrom, L., Rudenstam, C.M., Blomquist, E., et al. (1991) Regional Hyperthermic Perfusion with Melphalan after Surgery for Recurrent Malignant Melanoma of the Extremities. Swedish Melanoma Study Group. Journal of Clinical Oncology, 9, 2091-2094. https://doi.org/10.1200/JCO.1991.9.12.2091
[28]
Franckena, M., Fatehi, D., de Bruijne, M., Canters, R.A.M., van Norden, Y., Mens, J.W., van Rhoon, G.C. and van der Zee, J. (2009) Hyperthermia Dose-Effect Relationship in 420 Patients with Cervical Cancer Treated with Combined Radiotherapy and Hyperthermia. European Journal of Cancer, 45, 1969-1978. https://doi.org/10.1016/j.ejca.2009.03.009
[29]
Ballesteros, F.J., Martinez, V.J., Luque, B., et al. (2018) On the Thermodynamic Origin of Metabolic Scaling. Scientific Reports, 8, Article No. 1448. https://doi.org/10.1038/s41598-018-30973-x
Matay, G. and Zombory, L. (2000) Physiological Effects of Radiofrequency Radiation and Their Application for Medical Biology. Muegyetemi Kiado, Budapest, 80.
[32]
Brown, J.H., West, G.B. and Enquist, B.J. (2005) Yes, West, Brown and Enquist’s Model of Allometric Scaling Is Both Mathematically Correct and Biologically Relevant. Functional Ecology, 19, 735-738. https://doi.org/10.1111/j.1365-2435.2005.01022.x
[33]
Fristoe, T.S., Burger, J.R., Balk, M.A., et al. (2015) Metabolic Heat Production and Thermal Conductance Are Mass-Independent Adaptations to Thermal Environment in Birds and Mammals. PNAS, 112, 15934-15939. https://doi.org/10.1073/pnas.1521662112
[34]
Pennes, H.H. (1948) Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physics, 1, 93-122. https://doi.org/10.1152/jappl.1948.1.2.93
[35]
Deng, Z.-S. and Liu, J. (2012) Analytical Solutions to 3-D Bioheat Transfer Problems with or without Phase Change. In: Heat Transfer Phenomena and Applications, Intech, Rijeka, Chapter 8, 205-242. https://doi.org/10.5772/52963
[36]
Giordano, M.A., Gutierrez, G. and Rinaldi, C. (2010) Fundamental Solutions to the Bioheat Equation and Their Application to Magnetic Fluid Hyperthermia. International Journal of Hyperthermia, 26, 475-484.
[37]
Cundin, L.X., Roach, W.P. and Millenbaugh, N. (2009) Empirical Comparison of Pennes’ Bio-Heat Equation. Proceedings of SPIE, 7175, 717516-717519. https://doi.org/10.1117/12.805577
[38]
Lakhssassi, A., Kengne, E. and Semmaoui, H. (2010) Modified Pennes’ Equation Modelling Bio-Heat Transfer in Living Tissues: Analytical and Numerical Analysis. Natural Science, 2, 1375-1385. https://doi.org/10.4236/ns.2010.212168
[39]
Gao, B., Langer, S. and Corry, P.M. (1995) Application of the Time-Dependent Green’s Function and Fourier Transforms to the Solution of the Bioheat Equation. International Journal of Hypertension, 11, 267-285. https://doi.org/10.3109/02656739509022462
[40]
Van der Gaag, M.L., De Bruijne, M., Samaras, T., van der Zee, J. and Van Rhoon, G. (2006) Development of a Guideline for the Water Bolus Temperature in Superficial Hyperthermia. International Journal of Hyperthermia, 22, 637-656. https://doi.org/10.1080/02656730601074409
[41]
Liu, K.-C. and Tu, F.-J. (2019) Numerical Solution of a Bioheat Transfer Problem with Transient Blood Temperature. International Journal of Computational Methods, 16, Article ID: 1843001. https://doi.org/10.1142/S0219876218430016
[42]
(2006) IEEE C95.1. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE Std C95.1-2005. IEEE, Piscataway.
[43]
Ma, J., Yang, X., Sun, Y., et al. (2019) Thermal Damage in Three-Dimensional Vivo Bio-Tissues Induced by Moving Heat Sources in Laser Therapy. Scientific Reports, 9, Article No. 10987. https://doi.org/10.1038/s41598-019-47435-7
[44]
Thermal Conditions, CUErgo, Cornell University Ergonomics Web. http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcondnotes.html
[45]
Van Haaren, P.M.A., Hulshof, M.C.C.M., Kok, H.P., et al. (2008) Relation between Body Size and Temperatures during Locoregional Hyperthermia of Oesophageal Cancer Patients. International Journal of Hypertension, 24, 663-674. https://doi.org/10.1080/02656730802210448
[46]
Giering, K., Lamprecht, I. and Minet, O. (1996) Specific Heat Capacities of Human and Animal Tissues. Proceedings of SPIE—The International Society for Optical Engineering, Vol. 2624, 178-188. https://doi.org/10.1117/12.229547
[47]
de Greef, M. (2012) Loco-Regional Hyperthermia Treatment Planning: Optimisation under Uncertainty. Dutch Cancer Society, Amsterdam.
[48]
ESHO Taskgroup Committee (1992) Treatment Planning and Modelling in Hyperthermia, a Task Group Report of the European Society for Hyperthermic Oncology. Tor Vergata, Rome.
[49]
Kok, H.P., Van Haaren, P.M.A., Van de Kamer, J.B., et al. (2005) High-Resolution Temperature-Based Optimization for Hyperthermia Treatment Planning. Physics in Medicine and Biology, 50, 3127-3141. https://doi.org/10.1088/0031-9155/50/13/011
[50]
Newman, W.H., Lele, P.P. and Bowman, H.P. (1990) Limitations and Significance of Thermal Washout Data Obtained during Microwave and Ultrasound Hyperthermia. International Journal of Hypertension, 6, 771-784. https://doi.org/10.3109/02656739009140824
[51]
Kodera, S. and Hirata, A. (2018) Comparison of Thermal Response for RF Exposure in Human and Rat Models. International Journal of Environmental Research and Public Health, 15, 2320. https://doi.org/10.3390/ijerph15102320
[52]
Vincze, Gy. and Szasz, A. (2011) On the Extremum Properties of Thermodynamic Steady State in Non-Linear Systems. In: Piraján, J.C.M., Ed., Thermodynamics—Physical Chemistry of Aqueous Systems, IntechOpen, London, 241-316. http://www.intechopen.com/books/thermodynamics-physical- chemistry-of-aqueous-systems/on-the-extremum-properties-of-thermodynamic -steady-state-in-non-linear-systems https://doi.org/10.5772/21871
[53]
Vincze, Gy. and Szasz, A. (2019) New Look at an Old Principle: An Alternative Formulation of the Theorem of Minimum Entropy Production. Journal of Advances in Physics, 16, 508-517. https://doi.org/10.24297/jap.v16i1.8516
Head, J.F., Wang, F., Lipari, C.A., et al. (2000) The Important Role of Infrared Imaging in Breast Cancer. IEEE Engineering in Medicine and Biology Magazine, 19, 52-57. https://doi.org/10.1109/51.844380
[56]
Baronzio, G.F., Gramaglia, A., Baronzio, A., et al. (2006) Influence of Tumor Microenvironment on Thermoresponse: Biologic and Clinical Implications. In: Baronzio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment: A Primer, Landes Bioscience, Springer Science, New York, 62-86.
[57]
Kelleher, D.K. and Vaupel, P. (2006) Vascular Effects of Localized Hyperthermia. In: Baronzio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment: A Primer, Landes Biosceince, Springer Science, New York, 94-104.
[58]
Schwan, H.P. (1957) Electrical Properties of Tissue and Cell Suspensions. Advances in Biological and Medical Physics, 5, 147-209. https://doi.org/10.1016/B978-1-4832-3111-2.50008-0
[59]
Pethig, R. and Kell, D.B. (1987) The Passive Electrical Properties of Biological Systems: Their Significance in Physiology, Biophysics and Biotechnology. Physics in Medicine and Biology, 32, 933-977. https://doi.org/10.1088/0031-9155/32/8/001
[60]
Kurakin, A. (2011) The Self-Organizing Fractal Theory as a Universal Discovery Method: The Phenomenon of Life. Theoretical Biology and Medical Modelling, 8, 4. https://doi.org/10.1186/1742-4682-8-4
[61]
Walleczek, J. (2000) Self-Organized Biological Dynamics & Nonlinear Control. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511535338
[62]
Haken, H. (1987) Self-Organization and Information. Physica Scripta, 35, 247-254. https://doi.org/10.1088/0031-8949/35/3/006
[63]
Sornette, D. (2000) Chaos, Fractals, Self-Organization and Disorder: Concepts and Tools. Springer Verlag, Berlin, Los Angeles.
[64]
Deering, W. and West, B.J. (1992) Fractal Physiology. IEEE Engineering in Medicine and Biology, 11, 40-46. https://doi.org/10.1109/51.139035
[65]
West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific, Singapore, London.
[66]
Kauffman, S.A. (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York, Oxford. https://doi.org/10.1007/978-94-015-8054-0_8
[67]
Brummer, A.B., Savage, van M. and Enquist, B.J. (2017) A General Model for Metabolic Scaling in Self-Similar Asymmetric Networks. PLOS Computational Biology, 13, e1005394. https://doi.org/10.1371/journal.pcbi.1005394
[68]
Ochiai, T., Nacher, J.C. and Akutsu, T. (2018) Symmetry and Dynamics in Living Organisms: The Self-Similarity Principle Governs Gene Expression Dynamics.
[69]
Bassingthwaighte, J.B., Leibovitch, L.S. and West, B.J. (1994) Fractal Physiology. Oxford Univ. Press, New York, Oxford. https://doi.org/10.1007/978-1-4614-7572-9
[70]
Musha, T. and Sawada, Y. (1994) Physics of the Living State. IOS Press, Amsterdam.
[71]
Glazier, D.S. (2014) Metabolic Scaling in Complex Living Systems. Systems, 2, 451-540. https://doi.org/10.3390/systems2040451
[72]
Scheffer, M. and Nes, V.E.H. (2006) Self-Organized Similarity, the Evolutionary Emergence of Groups of Similar Species. PNAS, 103, 6230-6235. https://doi.org/10.1073/pnas.0508024103
[73]
West, G.B., Woodruf, W.H. and Born, J.H. (2002) Allometric Scaling of Metabolic Rate from Molecules and Mitochondria to Cells and Mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 2473-2478. https://doi.org/10.1073/pnas.012579799
[74]
Li, W. (1989) Spatial 1/f Spectra in Open Dynamical Systems. Europhysics Letters, 10, 395-400. https://doi.org/10.1209/0295-5075/10/5/001
[75]
Schlesinger, M.S. (1987) Fractal Time and 1/f Noise in Complex Systems. Annals of the New York Academy of Sciences, 504, 214-228. https://doi.org/10.1111/j.1749-6632.1987.tb48734.x
[76]
Brown, J.H. and West, G.B. (2000) Scaling in Biology. Oxford University Press, Oxford.
[77]
West, G.B. and Brown, J.H. (2005) The Origin of Allometric Scaling Laws in Biology from Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Biological Structure and Organization. Journal of Experimental Biology, 208, 1575-1592. https://doi.org/10.1242/jeb.01589
[78]
Aon, M.A., Saks, V. and Schlattner, U. (2014) Systems Biology of Metabolic and Signaling Networks: Energy, Mass and Information Transfer. Springer Series in Biophysics No. 16. Springer, Berlin. https://doi.org/10.1007/978-3-642-38505-6
[79]
Song, C., Havlin, S. and Makse, H.A. (2005) Self-Similarity of Complex Networks. Letters to Nature, 433, 392-395. https://doi.org/10.1038/nature03248
[80]
Frohlich, H. (1983) Coherence in Biology. In: Frohlich, H. and Kremer, F., Eds., Coherent Excitations in Biological Systems, Springer Verlag, Berlin, Heidelberg, 1-5. https://doi.org/10.1007/978-3-642-69186-7_1
[81]
Frohlich, H. (1988) Biological Coherence and Response to External Stimuli. Springer Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73309-3
[82]
Camazine, S., Deneubourg, J.L., Franks, N.R., et al. (2003) Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton Univ. Press, Princeton, Oxford.
[83]
Szasz, O., Szigeti, Gy.P. and Szasz, A. (2017) On the Self-Similarity in Biological Processes. Open Journal of Biophysics, 7, 183-196. https://doi.org/10.4236/ojbiphy.2017.74014
[84]
Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mathematics, 18, 293-297.
[85]
Lloyd, D., Aon, M.A. and Cortassa, S. (2001) Why Homeodynamics, Not Homeostasis? The Scientific World, 1, 133-145. https://doi.org/10.1100/tsw.2001.20
[86]
Wang, H., Wang, Z., Li, X., et al. (2011) A Robust Approach Based on Weibull Distribution for Clustering Gene Expression Data. Algorithms for Molecular Biology, 6, 14. https://doi.org/10.1186/1748-7188-6-14
[87]
Hesse, J. and Gross, T. (2014) Self-Organized Criticality as a Fundamental Property of Neural Systems. Frontiers in Systems Neuroscience, 8, 166. https://doi.org/10.3389/fnsys.2014.00166
[88]
West, G.B., Brown, J.H. and Enquist, B.J. (2001) A General Model for Ontogenetic Growth. Nature, 413, 628-631. https://doi.org/10.1038/35098076
[89]
Pugno, N.M. (2005) On the Statistical Law of Life. https://arxiv.org/ftp/q-bio/papers/0503/0503011.pdf
[90]
Sharkovsky, S. and Grab, E. (2011) Modelling Self-Similar Traffic in Networks. RTU 52nd International Scientific Conference, Riga, 13-15 October 2011.
[91]
Avrami, M.A. (1939) Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics, 7, 1103.
[92]
Cope, F.W. (1977) Detection of Phase Transitions and Cooperative Interactions by Avrami Analysis of Sigmoid Biological Time Curves for Muscle, Nerve, Growth, Firefly, and Infrared Phosphorescence, of Green Leaves, Melanin and Cytochrome C. Physiological Chemistry and Physics, 9, 443-459.
[93]
Cope, F.W. (1980) Avrami Analysis of Electrical Switching in Hydrated Melanin Suggest Dependence on a Phase Transition. Physiological Chemistry and Physics, 12, 537-538.
[94]
May, K.A. and Solomon, J.A. (2013) Four Theorems on the Psychometric Function. PLoS ONE, 8, e74815. https://doi.org/10.1371/journal.pone.0074815
[95]
Szasz, O., Szigeti, G.P. and Szasz, A. (2019) The Intrinsic Self-Time of Biosystems. Open Journal of Biophysics, 9, 131-145.
[96]
Andresen, B., Shiner, J.S. and Uehlinger, D.E. (2002) Allometric Scaling and Maximum Efficiency in Physiological Eigen Time. Proceedings of the National Academy of Sciences of the United States of America, 90, 5822-5824. https://doi.org/10.1073/pnas.082633699
[97]
Brown, J.H. and West, G.B. (2000) Scaling in Biology. Oxford University Press, Oxford.
[98]
Gunther, B. and Morgado, E. (2005) Allometric Scaling of Biological Rhythms in Mammals. Biological Research, 38, 207-212. https://doi.org/10.4067/S0716-97602005000200010
[99]
Benzinger, T.H. (1959) On Physical Heat Regulation and the Sense of Temperature in Man. Proceedings of the National Academy of Sciences of the United States of America, 45, 645-659. https://doi.org/10.1073/pnas.45.4.645
[100]
Erdmann, B., Lang, J. and Seebass, M. (1998) Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model. Annals of the New York Academy of Sciences, 858, 36-46. https://doi.org/10.1111/j.1749-6632.1998.tb10138.x
[101]
Tompkins, D.T., Vanderby, R., Klein, S.A., Beckman, W.A., Steeves, R.A., Frey, D.M. and Palival, B.R. (1994) Temperature-Dependent versus Constant-Rate Blood Perfusion Modelling in Ferromagnetic Thermoseed Hyperthermia: Results with a Model of the Human Prostate. International Journal of Hyperthermia, 10, 517-536. https://doi.org/10.3109/02656739409009355
[102]
Guy, A.W. and Chou, C.K. (1983) Physical Aspects of Localized Heating by Radio-Waves and Microwaves. In: Storm, K.F., Ed., Hyperthermia in Cancer Therapy, GK Hall Medical Publishers, Boston, 279-304.
[103]
Gottstein, U. (1969) Störungen des Hirnkreislaufes und zerebralen Stoffwechsels durch Hypoglykämie. In: Quandt, J., Ed., Die zerebralen Durchblutungsstörungen des Erwachsenenalters, Volk und Gesundheit, Berlin, 857-867.
[104]
Hahn, G.M. (1987) Blood-Flow. In: Field, S.B. and Franconi, C., Eds., Physics and Technology of Hyperthermia, NATO ASI Series, Series E: Applied Sciences, Martinus Nijhoff Publishers, Dordrecht, Boston, Lanchester, No. 127, 441-446. https://doi.org/10.1007/978-94-009-3597-6_19
[105]
Pence, D.M. and Song, C.W. (1986) Effect of Heat on Blood-Flow. In: Anghileri, L.J. and Robert, J., Eds., Hyperthermia in Cancer Treatment, Vol. II, CRC Press Inc., Boca Raton, 1-17. https://doi.org/10.1201/9780429266546-1
[106]
Szasz, A., Szasz, O. and Szasz, N. (2010) Oncothermia—Principles and Practices. Springer Verlag, Dordrecht, Heidelberg. https://doi.org/10.1007/978-90-481-9498-8
[107]
Silbernagl, S. and Despopoulos, A. (2015) Color Atlas of Physiology. 7th Edition, Georg Thieme Verlag, Stuttgart/New York. https://doi.org/10.1055/b-005-148942
[108]
Wildeboer, R., Southern, P. and Pankhurst, Q.A. (2014) On the Reliable Measurement of Specific Absorption Rates and Intrinsic Loss Parameters in Magnetic Hyperthermia Materials. Journal of Physics D: Applied Physics, 47, Article ID: 495003. https://doi.org/10.1088/0022-3727/47/49/495003
[109]
Wust, P. (2005) Thermoregulation in Humans—Experiences from Thermotherapy. Conference in Stuttgart, Nov. 21, 2005.
[110]
Bassingthwaighte, J.B. (1977) Physiology and Theory of Tracer Washout Techniques for the Estimation of Myocardial Blood Flow: Flow Estimation from Tracer Washout. Progress in Cardiovascular Diseases, 20, 165-189. https://doi.org/10.1016/0033-0620(77)90019-6
[111]
Bassingthwaighte, J.B. (1974) Organ Blood Flow, Wash-In, Washout, and Clearance of Nutrients and Metabolites. Mayo Clinic Proceedings, 49, 248-255.
[112]
Feldmann, H.J., Molls, M., Hoederath, A., et al. (1992) Blood Flow and Steady State Temperatures in Deep-Seated Tumors and Normal Tissues. International Journal of Radiation Oncology, Biology, Physics, 23, 1003-1008. https://doi.org/10.1016/0360-3016(92)90906-X
[113]
Samulski, T.V., Fessenden, P., Valdagni, R., et al. (1987) Correlations of Thermal Washout Rate, Steady State Temperatures, and Tissue Type in Deep Seated Recurrent or Metastatic Tumors. International Journal of Radiation Oncology, Biology, Physics, 13, 907-916. https://doi.org/10.1016/0360-3016(87)90106-4
[114]
Mandl, F. (2008) Statistical Physics. 2nd Edition, Manchester Physics, John Wiley & Sons, Hoboken.
[115]
Liu, J. (2000) Temperature Monitoring and Heating Optimization in Cancer Hyperthermia. Progress in Natural Science, 10, 787-793.
[116]
Deng, Z.-S. and Liu, J. (2002) Analytical Study on Bioheat Transfer Problems with Spatial or Transient Heating on Skin Surface or inside Biological Bodies. Journal of Biomechanical Engineering, 124, 638-649. https://doi.org/10.1115/1.1516810
[117]
Wren, J., Karlsson, M. and Loyd, D. (2001) A Hybrid Equation for Simulation of Perfused Tissue during Thermal Treatment. International Journal of Hypertension, 17, 483-498. https://doi.org/10.1080/02656730110081794
[118]
Davalos, R.D., Rubinsky, B. and Mir, L.M. (2003) Theoretical Analysis of the Thermal Effects during in Vivo Tissue Electroporation. Bioelectrochemistry, 61, 99-107. https://doi.org/10.1016/j.bioelechem.2003.07.001
[119]
Bagaria, H.G. and Johnson, D.T. (2005) Transient Solution to the Bioheat Equation and Optimization for Magnetic Fluid Hyperthermia Treatment. International Journal of Hyperthermia, 21, 57-75. https://doi.org/10.1080/02656730410001726956
[120]
Izquierdo-Kulich, E. and Nieto-Villar, J.M. (2013) Morphogenesis and Complexity of the Tumor Patterns. In: Rubio, R.G., Ryazantsev, Y.S., Starov, V.M., Huang, G.-X., Chetverikov, A.P., Arena, P., Nepomnyashchy, A.A., Ferrus, A. and Morozov, E.G., Eds., Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Understanding Complex Systems, Springer-Verlag Berlin Heidelberg, 657-691. https://doi.org/10.1007/978-3-642-34070-3_48
[121]
Davies, P.C.W., Demetrius, L. and Tuszynski, J.A. (2011) Cancer as a Dynamical Phase Transition. Theoretical Biology and Medical Modelling, 8, 30. https://doi.org/10.1186/1742-4682-8-30
[122]
Bru, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L. and Bru, I. (2003) The Universal Dynamics of Tumor Growth. Biophysical Journal, 85, 2948-2961. https://doi.org/10.1016/S0006-3495(03)74715-8
[123]
Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P. and Deisboeck, T.S. (2003) Does Tumor Growth Follow a “Universal Law”? Journal of Theoretical Biology, 225, 147-151. https://doi.org/10.1016/S0022-5193(03)00221-2
[124]
Wissler, E.H. (1998) Pennes’ 1948 Paper Revisited. Journal of Applied Physiology, 85, 35-41. https://doi.org/10.1152/jappl.1998.85.1.35
[125]
Nelson, D.A. (1998) Invited Editorial on “Pennes’ 1948 Paper Revisited”. Journal of Applied Physiology, 85, 2-3. https://doi.org/10.1152/jappl.1998.85.1.2
[126]
Charny, C.K., Weinbaum, S. and Levin, R.L. (1990) An Evaluation of the Weinbaum-Jiji Equation for Normal and Hyperthermic Conditions. Journal of Biomechanical Engineering, 112, 80-87. https://doi.org/10.1115/1.2891130
[127]
Najarian, S. and Pashaee, A. (2001) Inprovement of the Pennes Equation in the Analysis of Heat Transfer Phenomenon in Blood Perfused Tissues. Biomedical Sciences Instrumentation, 37, 185-190.
[128]
Szasz, A. and Vincze, Gy. (2006) Dose Concept of Oncological Hyperthermia: Heat-Equation Considering the Cell Destruction. Journal of Cancer Research and Therapeutics, 2, 171-181. https://doi.org/10.4103/0973-1482.29827
[129]
Szasz, A. and Vincze, Gy. (2007) Hyperthermia, a Modality in the Wings. Journal of Cancer Research and Therapeutics, 3, 56-66. https://doi.org/10.4103/0973-1482.31976
[130]
Kim, J.-K., Prasad, B. and Kim, S. (2017) Temperature Mapping and Thermal Dose Calculation in Combined Radiation Therapy and 13.56 MHz Radiofrequency Hyperthermia for Tumor Treatment. Proceedings SPIE 10047, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI, Vol. 10047, Article ID: 1004718. https://doi.org/10.1117/12.2253163 http://spie.org/Publications/Proceedings/Paper/10.1117/12.2253163?origin_id=x4318
[131]
Boldrini, J.L., Viana, M.P., dos Reis, S.F., et al. (2018) A Mathematical Model for Thermoregulation in Endotherms Including Heat Transport by Blood Flow and Thermal Feedback Control Mechanisms: Changes in Coat, Metabolic Rate, Blood Fluxes, Ventilation and Sweating Rates. Letters in Biomathematics, 5, 129-173. https://doi.org/10.1080/23737867.2018.1497458
[132]
Vincze, Gy., Szigeti, Gy.P. and Szasz, O. (2016) Non-Newtonian Analysis of Blood Flow. Journal of Advances in Physics, 11, 3470-3481. https://doi.org/10.24297/jap.v11i5.6834
[133]
Vincze, Gy., Szigeti, Gy.P. and Szasz, O. (2016) Negative Impedance Interval of Blood Flow in Capillary Bed. Journal of Advances in Physics, 11, 3482-3487. https://doi.org/10.24297/jap.v11i5.365
[134]
Szasz, O., Vincze, Gy., Szigeti, Gy.P., et al. (2018) An Allometric Approach of Tumor-Angiogenesis. Medical Hypotheses, 116, 74-78. https://doi.org/10.1016/j.mehy.2018.03.015
[135]
Szasz, O., Szigeti, Gy.P. and Szasz, A. (2016) Connections between the Specific Absorption Rate and the Local Temperature. Open Journal of Biophysics, 6, 53-74. https://doi.org/10.4236/ojbiphy.2016.63007
[136]
Rao, N.N. (1994) Elements of Engineering Electromagnetics. Prentice Hall International, London.
[137]
Jackson, J.D. (1999) Classical Electrodynamics. John Wiley & Sons Inc., New York.
[138]
Polk, C. and Postow, E. (1996) Handbook of Biological Effects of Electromagnetic Fields. CRC Press, New York, London, Tokyo, 15.
[139]
Dissado, L.A. (1990) A Fractal Interpretation of the Dielectric Response of Animal Tissues. Physics in Medicine and Biology, 35, 1487-1503. https://doi.org/10.1088/0031-9155/35/11/005
[140]
Goldberger, A.L., Amaral, L.A., Hausdorff, J.M., et al. (2002) Fractal Dynamics in Physiology: Alterations with Disease and Aging. PNAS Colloquium, 99, 2466-2472. https://doi.org/10.1073/pnas.012579499
[141]
Szendro, P., Vincze, G. and Szasz, A. (2001) Pink Noise Behaviour of the Bio-Systems. European Biophysics Journal, 30, 227-231. https://doi.org/10.1007/s002490100143
[142]
Szendro, P., Vincze, G. and Szasz, A. (2001) Bio-Response on White-Noise Excitation. Electromagnetic Biology and Medicine, 20, 215-229. https://doi.org/10.1081/JBC-100104145
[143]
Bak, P., Tang, C. and Wieserfeld, K. (1988) Self-Organized Criticality. Physical Review A, 38, 364-373. https://doi.org/10.1103/PhysRevA.38.364
[144]
Jones, E., Dewhirst, M. and Vujaskovic, Z. (2003) Hyperthermia Improves the Complete Response Rate for Superficial Tumours Treated with Radiation: Results of a Prospective Randomized Trial Testing the Thermal Dose Parameter CEM 43°T90. International Journal of Radiation Oncology, Biology, Physics, 57, S253-S254. https://doi.org/10.1016/S0360-3016(03)01088-5
[145]
Vernon, C.C., Hand, J.W., Field, S.B., Machin, D., Whaley, J.B., van der Zee, J., van Putten, W.L.J., van Rhoon, G.C., van Dijk, J.D.P., Gonzalez Gonzalez, D., Liu, F.-F., Goodman, P. and Sherar, M. (1996) Radiotherapy with or without Hyperthermia in the Treatment of Superficial Localized Breast Cancer: Results from Five Randomized Controlled Trials. International Journal of Radiation Oncology, Biology, Physics, 35, 731-744. https://doi.org/10.1016/0360-3016(96)00154-X
[146]
Sherar, M., Liu, F.-F., Pintilie, M., et al. (1997) Relationship between Thermal Dose and Outcome in Thermoradiotherapy Treatments for Superficial Recurrences of Breast Cancer: Data from a Phase III Trial. International Journal of Radiation Oncology, Biology, Physics, 39, 371-380. https://doi.org/10.1016/S0360-3016(97)00333-7
[147]
Mitsumori, M., Zeng, Z.F., Oliynychenko, P., et al. (2007) Regional Hyperthermia Combined with Radiotherapy for Locally Advanced Non-Small Cell Lung Cancers. International Journal of Clinical Oncology, 12, 192-198. https://doi.org/10.1007/s10147-006-0647-5
[148]
Shinn, K.S., Choi, I.B., Kay, C.S., et al. (1996) Thermoradiotherapy in the Treatment of Locally Advanced Nonsmall Cell Lung Cancer. Journal of the Korean Society for Therapeutic Radiology and Oncology, 14, 115-122. https://doi.org/10.1016/0169-5002(96)85955-1
[149]
Vasanthan, A., Mitsumori, M., Park, J.H., et al. (2005) Regional Hyperthermia Combined with Radiotherapy for Uterine Cervical Cancers: A Multi-Institutional Prospective Randomized Trial of the International Atomic Energy Agency. International Journal of Radiation Oncology, Biology, Physics, 61, 145-153. https://doi.org/10.1016/j.ijrobp.2004.04.057
[150]
Zolciak-Siwinska, A., Piotrkowicz, N., Jonska-Gmyrek, J., et al. (2013) HDR Brachytherapy Combined with Interstitial Hyperthermia in Locally Advanced Cervical Cancer Patients Initially Treated with Concomitant Radiochemotherapy—A Phase III Study. Radiotherapy and Oncology, 109, 194-199. https://doi.org/10.1016/j.radonc.2013.04.011
[151]
Jones, E.L., Oleson, J.R., Prosnitz, L.R., et al. (2005) Randomized Trial of Hyperthermia and Radiation for Superficial Tumors. Journal of Clinical Oncology, 23, 3079-3085. https://doi.org/10.1200/JCO.2005.05.520
[152]
Vaupel, P.W. and Kelleher, D.K. (1996) Metabolic Status and Reaction to Heat of Normal and Tumour Tissue. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermo-Radiotherapy and Thermo-Chemotherapy. Biology, Physiology and Physics, Vol. 1, Springer Verlag, Berlin Heidelberg, 157-176. https://doi.org/10.1007/978-3-642-57858-8_8
[153]
Oehr, P., Biersack, H.J. and Coleman, R.E. (2004) PET and PET-CT in Oncology. Springer Verlag, Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-18803-9
[154]
Foster, K.R. and Schepps, J.L. (1981) Dielectric Properties of Tumor and Normal Tissues at Radio through Microwave Frequencies. Journal of Microwave Power, 16, 107-119. https://doi.org/10.1080/16070658.1981.11689230
[155]
Seersa, I., Beravs, K., Dodd, N.J.F., et al. (1997) Electric Current Imaging of Mice Tumors. MRM, 37, 404-409. https://doi.org/10.1002/mrm.1910370318
[156]
Landini, G. and Rippin, J.W. (1993) Fractal Dimensions of the Epithelial-Connective Tissue Interfaces in Premalignant and Malignant Epithelial Lesions of the Floor of the Mouth. Analytical and Quantitative Cytology and Histology, 15, 144-149.
[157]
Wong, S.H.M, Fang, C.M., Chuah, L.-H., et al. (2018) E-Cadherin: Its Dysregulation in Carcinogenesis and Clinical Implications. Critical Reviews in Oncology/Hematology, 121, 11-22. https://doi.org/10.1016/j.critrevonc.2017.11.010
[158]
Knights, A.J., Funnel, A.P., Crossley, M. and Pearson, R.C.M. (2012) Holding Tight: Cell Junctions and Cancer Spread. Trends in Cancer Research, 8, 61-69.
[159]
Damadian, R. (1971) Tumor Detection by Nuclear Magnetic Resonance. Science, 171, 1151-1153. https://doi.org/10.1126/science.171.3976.1151
[160]
Szentgyorgyi, A. (1968) Bioelectronics. A Study on Cellular Regulations, Defense and Cancer. Academy Press, New York, London.
[161]
Szasz, A., Vincze, Gy., Szasz, O. and Szasz, N. (2003) An Energy Analysis of Extracellular Hyperthermia. Magneto- and Electro-Biology, 22, 103-115. https://doi.org/10.1081/JBC-120024620
[162]
Blad, B. and Baldetorp, B. (1996) Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue; a Possible Clinical Application for Electric Impedance Tomography. Physiological Measurement, 17, A105-A115. https://doi.org/10.1088/0967-3334/17/4A/015
[163]
Vincze, Gy., Szigeti, Gy., Andocs, G. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles. Biology and Medicine, 7, 249.
[164]
Thomas, S., Preda-Pais, A., Casares, S. and Brumeanu, T.D. (2004) Analysis of Lipid Rafts in T Cells. Molecular Immunology, 41, 399-409. https://doi.org/10.1016/j.molimm.2004.03.022
[165]
Nicolau, D.V., Burrage, K., Parton, R.G. and Hancock, J.F. (2006) Identifying Optimal Lipid Raft Characteristics Required to Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane. Journal of Molecular Cell Biology, 26, 313-323. https://doi.org/10.1128/MCB.26.1.313-323.2006
[166]
Nicolson, G.L. (2014) The Fluid—Mosaic Model of Membrane Structure: Still Relevant to Understanding the Structure, Function and Dynamics of Biological Membranes after More than 40 Years. Biochimica et Biophysica Acta, 1838, 1451-1466. https://doi.org/10.1016/j.bbamem.2013.10.019
[167]
Gramse, G., Dols-Perez, A., Edwards, M.A., Fumagalli, L. and Gomila, G. (2013) Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy. Journal of Biophysics, 104, 1257-1262. https://doi.org/10.1016/j.bpj.2013.02.011
[168]
Dharia, S. (2011) Spatially and Temporally Resolving Radio-Frequency Changes in Effective Cell Membrane Capacitance. PhD Theses, University of Utah, Salt Lake City.
[169]
Pike, L.J. (2003) Lipid Rafts: Bringing Order to Chaos. The Journal of Lipid Research, 44, 655-667. https://doi.org/10.1194/jlr.R200021-JLR200
[170]
Andersen, O.S., Koeppe, I.I. and Roger, E. (2007) Bilayer Thickness and Membrane Protein Function: An Energetic Perspective. Annual Review of Biophysics and Biomolecular Structure, 36, 107-130. https://doi.org/10.1146/annurev.biophys.36.040306.132643
[171]
Nicolau Dan, V., Burrage, K, Parton, R.G. and Hancock, J.F. (2006) Identifying Optimal Lipid Raft Characteristics Required to Promote Nanoscale Protein-Protein Interactions in the Plasma Membrane. Molecular and Cellular Biology, 26, 313-323
[172]
Staunton, J.R., Wirtz, D., Tlsty, T.D., et al. (2013) A Physical Sciences Network Characterization of Non-Tumorigenic and Metastatic Cells. Scientific Reports, 3, Article No. 1449. https://doi.org/10.1038/srep01449
[173]
Kotnik, T. and Miklavcic, D. (2000) Theoretical Evaluation of the Distributed Power Dissipation in Biological Cells Exposed to Electric Fields. Bioelectromagnetics, 21, 385-394. https://doi.org/10.1002/1521-186X(200007)21:5<385::AID-BEM7>3.0.CO;2-F
[174]
Pething, R. (1979) Dielectric and Electronic Properties of Biological Materials. John Wiley and Sons, New York.
[175]
Volkov, V.V., Palmer, D.J. and Righini, R. (2007) Distinct Water Species Confined at the Interface of a Phospholipid Membrane. Physical Review Letters, 99, Article ID: 078302. https://doi.org/10.1103/PhysRevLett.99.078302
[176]
Liu, L.M. and Cleary, S.F. (1995) Absorbed Energy Distribution from Radiofrequency Electromagnetic Radiation in a Mammalian Cell Model: Effect of Membrane-Bound Water. Bioelectromagnetics, 16, 160-171. https://doi.org/10.1002/bem.2250160304
[177]
Hendry, B. (1981) Membrane Physiology and Membrane Excitation. Croom Helm, London. https://doi.org/10.1007/978-1-4615-9766-7
[178]
Ma, Y., Poole, K., Goyette, J., et al. (2017) Introducing Membrane Charge and Membrane Potential to T Cell Signaling. Frontiers in Immunology, 8, 1513. https://doi.org/10.3389/fimmu.2017.01513
[179]
Martinsen, O.G., Grimnes, S. and Schwan, H.P. (2002) Interface Phenomena and Dielectric Properties of Biological Tissue. Corpus ID: 41679856. https://www.semanticscholar.org/paper/INTERFACE-PHENOMENA-AND-DIELECTRIC -PROPERTIES-OF-Martinsen-Grimnes/96e2f6c14dbba2ae5537a8a637b52d486b3925ef
[180]
Banerjee, S., Vandenbranden, M. and Ruysschaert, J. (1981) Interaction of Tobacco Mosaic Virus Protein with Lipid Membrane Systems. FEBS Letters, 133, 221-224. https://doi.org/10.1016/0014-5793(81)80510-8
[181]
Schubert, D., Bleuel, H., Domninc, B. and Wiedner, G. (1977) Protein-Induced Conductivity Changes in Black Lipid Membranes and Protein Aggregation. FEBS Letters, 74, 47-49. https://doi.org/10.1016/0014-5793(77)80749-7
[182]
Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 7, 216-229. https://doi.org/10.4236/ojbiphy.2017.74016
[183]
Szasz, A., Szasz, O. and Szasz, N. (2001) Electro-Hyperthermia: A New Paradigm in Cancer Therapy. Deutsche Zeitschrift fur Onkologie, 33, 91-99. https://doi.org/10.1055/s-2001-19447
[184]
Szasz, O. and Szasz, A. (2013) Burden of Oncothermia: Why Is It Special? Conference Papers in Medicine, 2013, Article ID: 938689. https://doi.org/10.1155/2013/938689
[185]
Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press, Taylor & Francis Group, London, 323-336.
[186]
Szasz, A. (2014) Oncothermia: Complex Therapy by EM and Fractal Physiology. IEEE General Assembly and Scientific Symposium (URSI GASS), 2014 21th URSI, Beijing, 16-23 August 2014, 1-4. https://doi.org/10.1109/URSIGASS.2014.6930100
[187]
Sowers, A.E. (1984) Characterisation of Electric Field-Induced Fusion in Erythrocyte Ghost Membranes. The Journal of Cell Biology, 99, 1989-1996. https://doi.org/10.1083/jcb.99.6.1989
[188]
Marszalek, P. and Tsong, T.Y. (1995) Cell Fission and Formation of Mini Cell Bodies by High Frequency Alternating Electric Field. Biophysical Journal, 68, 1218-1221. https://doi.org/10.1016/S0006-3495(95)80338-3
[189]
Cleary, S.F., Liu, L.-M. and Garber, F. (1985) Erythrocyte Haemolysis by Radiofrequency Fields. Bioelectromagnetics, 6, 313-322. https://doi.org/10.1002/bem.2250060311
[190]
Liu, D.-S., Astumian, R.D. and Tsong, T.Y. (1990) Activation of Na+ and K+ Pumping Modes of (Na,K)-ATPase by an Oscillating Electric Field. The Journal of Biological Chemistry, 265, 7260-7267. https://doi.org/10.1016/S0021-9258(19)39108-2
[191]
Walleczek, J. (1992) Electromagnetic Field Effects on Cells of the Immune System: The Role of Calcium Signalling. FASEB Journal, 6, 3177-3185. https://doi.org/10.1096/fasebj.6.13.1397839
[192]
Cho, M.R., Thatte, H.S., Silvia, M.T., et al. (1999) Transmembrane Calcium Influx Induced by AC Electric Fields. FASEB Journal, 13, 677-683. https://doi.org/10.1096/fasebj.13.6.677
[193]
Ho, M.-W., Popp, F.-A. and Warnke, U. (1994) Bioelectrodynamics and Biocommunication. World Scientific, Singapore, London. https://doi.org/10.1142/2267
[194]
Bernardi, P. and D’Inzeo, G. (1989) Physical Mechanisms for Electromagnetic Interaction with Biological Systems. In: Lin, J.C., Ed., Electromagnetic Interaction with Biological Systems, Plenum Press, New York, London, 179-214. https://doi.org/10.1007/978-1-4684-8059-7_9
[195]
Markov, M.S. (1994) Biological Effects of Extremely Low Frequency Magnetic Fields. In: Ueno, S., Ed., Biomagnetic Stimulation, Plenum Press, New York, London, 91-104. https://doi.org/10.1007/978-1-4757-9507-3_7
[196]
Bauerus, K.C.L., Sommarin, M., Persson, B.R., et al. (2003) Interaction between Weak Low Frequency Magnetic Fields and Cell Membranes. Bioelectromagnetics, 24, 395-402. https://doi.org/10.1002/bem.10136
[197]
Benett, W.R. (1994) Cancer and Power Lines. Physics Today, 23-29. https://doi.org/10.1063/1.881417
[198]
Portier, C.J. and Wolfe, M.S. (1998) Assessment of Health Effects from Exposure to Power-Line Frequency Electric and Magnetic Fields. National Institute of Environmental Health Sciences, Research Triangle Park, NIH Publication No. 98-3981.
[199]
Harland, J.D. and Liburdy, R.P. (1997) Environmental Magnetic Fields Inhibit the Anti-Proliferation Action of Tamoxifen and Melatonin in a Human Breast Cancer Cell Line. Bioelectromagnetics, 18, 555-562. https://doi.org/10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1
[200]
Ahlbom, A., Day, N., Feychting, M., et al. (2000) A Pooled Analysis of Magnetic Fields and Childhood Leukaemia. British Journal of Cancer, 83, 692-698. https://doi.org/10.1054/bjoc.2000.1376
[201]
Greenland, S., Sheppard, A.R., Kaune, W.T., et al. (2000) A Pooled Analysis of Magnetic Fields, Wire Codes, and Childhood Leukaemia. Epidemiology, 11, 624-634. https://doi.org/10.1097/00001648-200011000-00003
[202]
Blackman, C.F., Benane, S.G. and House, D.E. (2001) The Influence of 1.2μT, 60Hz Magnetic Fields on Melatonin- and Tamoxifen-Induced Inhibition of MCF-7 Cell Growth. Bioelectromagnetics, 22, 122-128. https://doi.org/10.1002/1521-186X(200102)22:2<122::AID-BEM1015>3.0.CO;2-V
[203]
Glaser, R. (2005) Are Thermoreceptors Responsible for “Non-Thermal” Effects of RF Fields? Edition Wissenschaft Forschungsgemeinschaft Funk e. V. G 14515. Issue No. 21. December 2005.
[204]
Zotin, A.A. and Zotin, A.I. (1996) Thermodynamic Bases of Developmental Processes. Journal of Non-Equilibrium Thermodynamics, 21, 307-320. https://doi.org/10.1515/jnet.1996.21.4.307
[205]
Lakhssassi, A., Kengne, E. and Semmaoui, H. (2010) Investigation of Nonlinear Temperature Distribution in Biological Tissues by Using Bioheat Transfer Equation of Pennes’ Type. Natural Science, 2, 131-138. https://doi.org/10.4236/ns.2010.23022
[206]
Chang, I. (2003) Finite Element Analysis of Hepatic Radiofrequency Ablation Probes Using Temperature-Dependent Electrical Conductivity. BioMedical Engineering OnLine, 2, Article No. 12. https://doi.org/10.1186/1475-925X-2-12
[207]
Kok, H.P., Navarro, F., Strigari, L., et al. (2018) Locoregional Hyperthermia of Deep-Seated Tumours Applied with Capacitive and Radiative Systems: A Simulation Study. International Journal of Hypertension, 34, 714-730. https://doi.org/10.1080/02656736.2018.1448119
[208]
Canters, R.A.M., Franckena, M., van der Zee, J. and van Rhoon, G.C. (2011) Optimizing Deep Hyperthermia Treatments: Are Locations of Patient Pain Complaints Correlated with Modelled SAR Peak Locations? Physics in Medicine and Biology, 56, 439-451. https://doi.org/10.1088/0031-9155/56/2/010
[209]
Dutz, S. and Hergt, R. (2013) Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy. International Journal of Hypertension, 29, 790-800. https://doi.org/10.3109/02656736.2013.822993
[210]
Chen, C.-C., Chen, C.-L., Li, J.-J., et al. (2019) The Presence of Gold Nanoparticles in Cells Associated with the Cell-Killing Effect of Modulated Electro-Hyperthermia. ACS Applied Bio Materials, 2, 3573-3581. https://doi.org/10.1021/acsabm.9b00453
[211]
Szasz, A. (2007) Hyperthermia, a Modality in the Wings. Journal of Cancer Research and Therapeutics, 3, 56-66. https://doi.org/10.4103/0973-1482.31976
[212]
Guest, W.C., Cashman, N.R. and Plotkin, S.S. (2011) A Theory for the Anisotropic and Inhomogeneous Dielectric Properties of Proteins. Physical Chemistry Chemical Physics, 13, 6286-6295. https://doi.org/10.1039/c0cp02061c
[213]
Yang, M. and Brackenbury, W.J. (2013) Membrane Potential and Cancer Progression. Frontiers in Physiology, 4, 185. https://doi.org/10.3389/fphys.2013.00185
[214]
Govorov, A.O. and Richardson, H.H. (2007) Generating Heat with Metal Nanoparticles. Nanotoday, 2, 30-39. https://doi.org/10.1016/S1748-0132(07)70017-8
[215]
Johnson, S.A., Stinson, B.M., Go, M.S., et al. (2010) Temperature-Dependent Phase Behavior and Protein Partitioning in Giant Plasma Vehicles. Biochimica et Biophysica Acta, 1798, 1427-1435. https://doi.org/10.1016/j.bbamem.2010.03.009
[216]
Veatch, S.L., Cicuta, P., Sengupta, P., Honerkamp-Smith, A., Holowka, D. and Baird, B. (2008) Critical Fluctuations in Plasma Membrane Vesicles. ACS Chemical Biology, 3, 287-295. https://doi.org/10.1021/cb800012x
[217]
Langner, M., Komorowska, M., Koter, M. and Gomulkiewicz, J. (1984) Phase Transitions in Spherical Bilayer Membranes Prepared of Bulk Erythrocyte Membrane Lipids. General Physiology and Biophysics, 3, 521-526.
[218]
Hossain, M.T., Prasad, B., Park, K.S., et al. (2016) Simulation and Experimental Evaluation of Selective Heating Characteristics of 13,56 MHz Radiofrequency Hyperthermia in Phantom Models. International Journal of Precision Engineering and Manufacturing, 17, 253-256. https://doi.org/10.1007/s12541-016-0033-9
[219]
Andocs, G., Rehman, M.U., Zhao, Q.L., Papp, E., Kondo, T. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. Biology and Medicine, 7, 1-9. https://doi.org/10.4172/0974-8369.1000247
[220]
Andocs, G., Rehman, M.U., Zhao, Q.-L., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cell. Cell Death Discovery, 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39
[221]
Prasad, B., Kim, S., Cho, W., et al. (2018) Effect of Tumor Properties on Energy Absorption, Temperature Mapping, and Thermal Dose in 13,56-MHz Radiofrequency Hyperthermia. Journal of Thermal Biology, 74, 281-289. https://doi.org/10.1016/j.jtherbio.2018.04.007
[222]
Portoro, I., Danics, L. and Veres, D. (2018) Increased Efficacy in Treatment of Glioma by a New Modulated Electro-Hyperthermia (mEHT) Protocol. Oncothermia Journal, 24, 344-356.
[223]
Kao, P.H.-J., Chen, C.-H., Chang, Y.-W., et al. (2020) Relationship between Energy Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia. Scientific Reports, 10, Article No. 8936. https://doi.org/10.1038/s41598-020-65823-2
[224]
Fiorentini, G., Sarti, D. and Casadei, V. (2019) Modulated Electro-Hyperthermia (mEHT) [oncothermia®] Protocols as Complementary Treatment. Oncothermia Journal, 25, 85-115.
[225]
Szasz, A.M., Arkosy, P., Arrojo, E.E., et al. (2020) Guidelines for Local Hyperthermia Treatment in Oncology. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 2, Cambridge Scholars, Cambridge, 32-71.
[226]
Szasz, A.M., Minnaar, C.A., Szentmartoni, Gy., et al. (2019) Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Frontiers in Oncology, 9, Article No. 1012. https://doi.org/10.3389/fonc.2019.01012