Actually, in Republic of Congo, rhizobia have poorly
phenotypically and biochemically characterized. This study aimed to
characterize native rhizobia. Rhizobia strains were isolated using nodule roots
collected on Milletia laurentii, Acacia spp., Albizia lebbeck,and Vigna unguiculata. The strains isolated
were characterized microbiologically, biochemically, physiologically, and
molecularly identified using 16S rRNA method. The results reported in this
study are only for six strains of all 77 isolated: RhA1, RhAc4, RhAc15, RhAc13,
RhW1, and RhV3. All native strains were positive to urease activity, negative
to cellulase and pectinase activity except for one isolate that showed a
positive cellulase activity. Moreover, isolates have grown at 12% of NaCl. On
different effects of temperatures, isolates were able to grow up to 44°C and showed good growth at pH from 7 to 9 and
the ability to use ten different carbon hydrates sources. The strains were
identified as Rhizobium tropici, Rhizobium sp., Mesorhizobium sp. Bradyrhizobium
yuanmingense and Bradyrhizobium
elkanii. The phylogenetically analysis of the 16S rRNA genes, using a
clustering method, allowed us to have a history that is both ancient and stable
of four clades among genes with similar patterns. Expanding our awareness of
the new legume-rhizobia will be a valuable resource for incorporating an alternative
nitrogen fixation approach to consolidate the growth of legumes. These germs
can be used in Congolese agriculture to improve yield of crops.
References
[1]
Nag, P., Shriti, S. and Das, S. (2020) Microbiological Strategies for Enhancing Biological Nitrogen Fixation in Nonlegumes. Journal of Applied Microbiology, 129, 186-198. https://doi.org/10.1111/jam.14557
[2]
Angus, A.A. and Hirsch, A.M. (2010) Insights into the History of the Legume-Betaproteobacterial Symbiosis. Molecular Ecology, 19, 28-30.
https://doi.org/10.1111/j.1365-294X.2009.04459.x
[3]
Roy, P., Achom, M., Wilkinson, H., Lagunas, B. and Gifford, M.L. (2020) Symbiotic Outcome Modified by the Diversification from 7 to over 700 Nodule-Specific Cysteine-Rich Peptides. Genes (Basel), 11, 348.
https://doi.org/10.3390/genes11040348
[4]
Chen, L., Lu, Q., Zhou, L., Li, I., Chen, Z., Sun, L., Wang, W., Lin, Z., Zhao, J., Yamaji, N., Ma, J.F., Gu, M., Xu, G. and Liao, H. (2019) A Nodule-Localized Phosphate Transporter GmPT7 Plays an Important Role in Enhancing Symbiotic N2 Fixation and Yield in Soybean. New Phytologist, 221, 2013-2025.
https://doi.org/10.1111/nph.15541
[5]
Mohan Jain, S. and Suprasanna, P. (2011) Induced Mutations for Enhancing Nutrition and Food Production. Gene Conserve, 10, 201-215.
[6]
Reddy, C.A. and Saravanan, R.S. (2013) Polymicrobial Multi-Functional Approach for Enhancement of Crop Productivity. Advances in Applied Microbiology, 82, 53-113. https://doi.org/10.1016/B978-0-12-407679-2.00003-X
[7]
Ren, B., Wang, X., Duan, J. and Ma, J. (2019) Rhizobial tRNA-Derived Small RNAs Are Signal Molecules Regulating Plant Nodulation. Science, 365, 919-922.
https://doi.org/10.1126/science.aav8907
[8]
Afkhami, M.E., Mahler, D.L., Burns, J. H., Weber, M.G., Wojciechowski, M.F., Sprent, J. and Strauss, S.Y. (2018) Symbioses with Nitrogen-Fixing Bacteria: Nodulation and Phylogenetic Data across Legume Genera. Ecology, 99, 502.
https://doi.org/10.1002/ecy.2110
[9]
Carter, A.M. and Tegeder, M. (2016) Increasing Nitrogen Fixation and Seed Development in Soybean Requires Complex Adjustments of Nodule Nitrogen Metabolism and Partitioning Processes. Current Biology, 26, 2044-2051.
https://doi.org/10.1016/j.cub.2016.06.003
[10]
Forrester, N.J. and Ashman, T.L. (2018) The Direct Effects of Plant Polyploidy on the Legume-Rhizobia Mutualism. Annals of Botany, 121, 209-220.
https://doi.org/10.1093/aob/mcx121
[11]
Sathya, A., Vijayabharathi, R. and Gopalakrishnan, S. (2017) Plant Growth-Promoting Actinobacteria: A New Strategy for Enhancing Sustainable Production and Protection of Grain Legumes. 3 Biotech, 7, 102.
https://doi.org/10.1007/s13205-017-0736-3
[12]
Boudehouche, W., Parker, M.A. and Boulila, F. (2020) Relationships of Bradyrhizobium Strains Nodulating Three Algerian Genista Species. Systematic and Applied Microbiology, 43, Article ID: 126074.
https://doi.org/10.1016/j.syapm.2020.126074
[13]
Ferraz Helene, L.C., O’Hara, G. and Hungria, M. (2020) Characterization of Bradyrhizobium Strains Indigenous to Western Australia and South Africa Indicates Remarkable Genetic Diversity and Reveals Putative New Species. Systematic and Applied Microbiology, 43, Article ID: 126053.
https://doi.org/10.1016/j.syapm.2020.126053
[14]
Gritli, T., Ellouze, W., Chihaoui, S.-A., Barhoumi, F., Mhamdi, R. and Mnasri, B. (2020) Genotypic and Symbiotic Diversity of Native Rhizobia Nodulating Red Pea (Lathyrus cicera L.) in Tunisia. Systematic and Applied Microbiology, 43, Article ID: 126049. https://doi.org/10.1016/j.syapm.2019.126049
[15]
Beukes, C.W., Boschoff, F.S., Phalane, F.L., Hassen, A.I., le Roux, M.M., Stepkowski, T., Venter, S.N. and Steenkamp, E.T. (2019) Both Alpha- and Beta-Rhizobia Occupy the Root Nodules of Vachellia Karroo in South Africa. Frontiers in Microbiology, 10, 1195. https://doi.org/10.3389/fmicb.2019.01195
[16]
Mwenda, G.M., Karanja, N.K., Boga, H., Kahindi, J.H.P., Muigai, A. and Odee, D. (2010) Abundance and Diversity of Legume Nodulating Rhizobia in Soils of Embu District, Kenya. Tropical and Subtropical Agroecosystems, 13, 1-10.
[17]
Ohyama, T. (2017) The Role of Legume-Rhizobium Symbiosis in Sustainable Agriculture. In: Legume Nitrogen Fixation in Soils with Low Phosphorus Availability, Springer, Berlin, 1-20. https://doi.org/10.1007/978-3-319-55729-8_1
[18]
Mandimba, G.R. and Djondo, Y.M. (1996) Nodulation and Yields of Arachis hypogaea L. as Affected by Soil Management in the Congo. Biological Agriculture & Horticulture, 12, 339-351. https://doi.org/10.1080/01448765.1996.9754757
[19]
Mandimba, G.R. and Mondibaye, A. (1996) Effect of Inoculation and N Fertilization on Soyabean (Glycine max (L.) Merrill) Grown in Congo Soil. Biological Agriculture & Horticulture, 13, 197-204.
https://doi.org/10.1080/01448765.1996.9754781
[20]
Mandimba, G.R. (1998) Response of Soyabean Crops to Mucuna pruriens Green Manure in Symbiosis with Cowpea Bradyrhizobia in Congo. Biological Agriculture & Horticulture, 16, 15-23. https://doi.org/10.1080/01448765.1998.9755215
[21]
Lindstrom, K., Murwira, M., Willems, A. and Altier, N. (2010) The Biodiversity of Beneficial Microbe-Host Mutualism: The Case of Rhizobia. Research in Microbiology, 161, 453-463. https://doi.org/10.1016/j.resmic.2010.05.005
[22]
Meng, L., Zhang, A., Wang, F., Han, X., Wang, D. and Li, S. (2015) Arbuscular Mycorrhizal Fungi and Rhizobium Facilitate Nitrogen Uptake and Transfer in Soybean/Maize Intercropping System. Frontiers in Plant Science, 6, 339.
https://doi.org/10.3389/fpls.2015.00339
[23]
Paudel, D., Liu, F., Wang, L., Crook, M., Maya, S., Peng, Z., Kelley, K., Ané, J.-M. and Wang, J. (2020) Isolation, Characterization, and Complete Genome Sequence of a Bradyrhizobium Strain Lb8 From Nodules of Peanut Utilizing Crack Entry Infection. Frontiers in Microbiology, 11, 93.
https://doi.org/10.3389/fmicb.2020.00093
[24]
Yuan, K., Reckling, M., Ramirez, M.D.A., Djedidi, S., Fukuhara, I., Ohyama, T., Yokoyama, T., Bellingrath-Kimura, S.D., Halwani, M., Egamberdieva, D. and Ohkama-Ohtsu, N. (2020) Characterization of Rhizobia for the Improvement of Soybean Cultivation at Cold Conditions in Central Europe. Microbes and Environments, 35, 1-13. https://doi.org/10.1264/jsme2.ME19124
[25]
Somasegaran, P. and Hoben, H.J. (1985) Methods in Legume-Rhizobium Technology. University of Hawaii, Niftal, 23-77.
[26]
Murugesan, S., Manoharan, C., Vijayakumar, R. and Panneerselvam, A. (2010) Isolation and Characterization of Agrobacterium rhizogenes from the Root Nodules of Some Leguminous Plants. International Journal of Microbiology Research, 1, 92-96.
[27]
Deshwal, V.K. and Chaubey, A. (2014) Isolation and Characterization of Rhizobium leguminosarum from Root Nodule of Pisum sativum L. Journal of Academia and Industrial Research, 2, 464-467.
[28]
Dekak, A., Chabi, R., Menasria, T. and Benhizia, Y. (2018) Phenotypic Characterization of Rhizobia Nodulating Legumes Genista microcephala and Argyrolobium uniflorum Growing under Arid Conditions. Journal of Advanced Research, 14, 35-42. https://doi.org/10.1016/j.jare.2018.06.001
[29]
Jarvis, B., MacLean, T.S., Robertson, I.G.C. and Fanning, G.R. (1977) Phenetic Similarity and DNA Base Sequence Homology of Root Nodule Bacteria from New Zealand Native Legumes and Rhizobium Strains from Agricultural Plants. New Zealand Journal of Agricultural Research, 20, 235-248.
https://doi.org/10.1080/00288233.1977.10427328
[30]
Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
[31]
Figueroa-López, A.M., Cordero-Ramírez, J.D., Martínez-álvarez, J.C., López-Meyer, M., Lizárraga-Sánchez, G.J., Félix-Gastélum, R., Castro-Martínez, C. and Maldonado-Mendoza, I.E. (2016) Rhizospheric Bacteria of Maize with Potential for Biocontrol of Fusarium verticillioides. SpringerPlus, 5, 330.
https://doi.org/10.1186/s40064-016-1780-x
[32]
Dhiman, M., Dhiman, V.K., Rana, N. and Dipta, B. (2019) Isolation and Characterization of Rhizobium Associated with Root Nodules of Dalbergia sissoo. International Journal of Current Microbiology and Applied Sciences, 8, 1910-1918.
https://doi.org/10.20546/ijcmas.2019.803.227
[33]
Yacine, B. (2017) Caractérisation phénotypique et phylogénétique des bactéries associées aux nodules de la légumineuse du genre Hedysarum.
[34]
Marandu, A.E., Semu, E., Mrema, J.P. and Nyaki, A.S. (2010) Quantification of Atmospheric N2 Fixed by Cowpea, Pigeonpea and Greengram Grown on Ferralsols in Muheza District, Tanzania. Tanzania Journal of Agricultural Sciences, 10, 29-37.
[35]
Laranjo, M. and Oliveira, S. (2011) Tolerance of Mesorhizobium Type Strains to Different Environmental Stresses. Antonie van Leeuwenhoek, 99, 651-662.
https://doi.org/10.1007/s10482-010-9539-9
[36]
Dong, R., Zhang, J., Huan, H., Bai, C., Chen, Z. and Liu, G. (2017) High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis. International Journal of Molecular Sciences, 18, 1625.
https://doi.org/10.3390/ijms18081625
[37]
Moghaddam, M.N., Azadeh, H.S., Reza, Z.M. and Amir, L. (2018) Phenotypic and Molecular Characterization of Sinorhizobium meliloti Strains Isolated from the Roots of Medicago sativa in Iran. Biological Journal of Microorganism, 6, 29-39.
[38]
Maatallah, J., Berraho, E.B., Munoz, S., Sanjuan, J. and Lluch, C. (2002) Phenotypic and Molecular Characterization of Chickpea Rhizobia Isolated from Different Areas of Morocco. Journal of Applied Microbiology, 93, 531-540.
https://doi.org/10.1046/j.1365-2672.2002.01718.x
[39]
Upadhyay, S., Singh, J. and Singh, D. (2011) Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria under Salinity Condition. Pedosphere, 21, 214-222. https://doi.org/10.1016/S1002-0160(11)60120-3
[40]
Benidire, L., Lahrouni, M., Daoui, K., Fatemi, Z.E.A., Carmona, R.G., Gottfert, M. and Oufdou, K. (2018) Phenotypic and Genetic Diversity of Moroccan rhizobia Isolated from Vicia faba and Study of Genes That Are Likely to Be Involved in Their Osmotolerance. Systematic and Applied Microbiology, 41, 51-61.
https://doi.org/10.1016/j.syapm.2017.09.003
[41]
Laranjo, M., Alexandre, A. and Oliveira, S. (2017) Global Transcriptional Response to Salt Shock of the Plant Microsymbiont Mesorhizobium loti MAFF303099. Research in Microbiology, 168, 55-63. https://doi.org/10.1016/j.resmic.2016.07.006
[42]
M’lakhal, A. (2011) Effet de certains inducteurs de gène nod (composés phénoliques) sur la croissance de Rhizobium en symbiose avec Vicia faba. Caractérisation et lutte biologique. Thèse de Doctorat, Université de Tlemcen, Algérie.
[43]
Mohamed, S., Smouni, A., Neyra, M., Kharchaf, D. and Filali-Maltouf, A. (2000) Phenotypic Characteristics of Root-Nodulating Bacteria Isolated from Acacia spp. Grown in Libya. Plant and Soil, 224, 171-183.
https://doi.org/10.1023/A:1004838218642
[44]
Jordan, D.C. (1984) Rhizobiaceae. In: Krieg, N.R. and Holt, J.G., Eds., Bergey’s Manual of Systematic Bacteriology, Vol. 1, Williams and Wilkins, Baltimore, 234-244.
[45]
Ferreira, P.A.A., Dahme, S.F.B., Backes, T., Silveira, A.O., Jacques, R.J.S., Zafar, M., Pauletto, E.A., dos Santos, M.A.O., da Silva, K., Giachini, A.J. and Antoniolli, Z.I. (2018) Isolation, Characterization and Symbiotic Efficiency of Nitrogen-Fixing and Heavy Metal-Tolerant Bacteria from a Coalmine Wasteland. Revista Brasileira de Ciencia do Solo, 42, e0170171. https://doi.org/10.1590/18069657rbcs20170171
[46]
Abdelnaby, M., Elnesairy, N.N.B., Mohamed, S.H. and Alkhayali, Y.A.A. (2015) Symbiotic and Phenotypic Characteristics of Rhizobia Nodulaing Cowpea (Vigna unguiculata L. Walp) Grown in Arid Region of Libya (Fezzan). Journal of Environmental Science and Engineering, 4, 227-239.
https://doi.org/10.17265/2162-5263/2015.05.001
[47]
Graham, P. (1964) The Application of Computer Techniques to the Taxonomy of the Root-Nodule Bacteria of Legumes. Microbiology, 35, 511-517.
https://doi.org/10.1099/00221287-35-3-511
[48]
Nahar, N., Begum, A. and Akhter, H. (2017) Isolation, Identification and Molecular Characterization of Rhizobium Species from Sesbania bispinosa Cultivated in Bangladesh. African Journal of Agricultural Research, 12, 1874-1880.
https://doi.org/10.5897/AJAR2017.12321
[49]
Prasuna, M.L. (2014) Characterization of Rhizobium Isolates Associated with Wild Legumes on the Basis of Antibiotic Resistance. Indian Journal of Scientific Research, 4, 22-24.
[50]
Mihaylova, S., Genov, N. and Moore, E. (2014) Susceptibility of Environmental Strains of Rhizobium Radiobacter to Antimicrobial Agents. World Applied Sciences Journal, 31, 859-862.
[51]
Elkan, G. (1992) Taxonomy of the Rhizobia. Canadian Journal of Microbiology, 38, 446-450. https://doi.org/10.1139/m92-075
[52]
Stan, V., Gament, E., Cornea, C.P., Voaides, C., Dusa, M. and Plopeanu, G. (2011) Effects of Heavy Metal from Polluted Soils on the Rhizobium Diversity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39, 88-95.
https://doi.org/10.15835/nbha3916081
[53]
Pereira, S.I.A., Lima, A.I.G. and Figueira, E.M.A.P. (2006) Heavy Metal Toxicity in Rhizobium leguminosarum Biovar Viciae Isolated from Soils Subjected to Different Sources of Heavy-Metal Contamination: Effects on Protein Expression. Applied Soil Ecology, 33, 286-293. https://doi.org/10.1016/j.apsoil.2005.10.002
[54]
Odoh, C.K. (2017) Plant Growth Promoting Rhizobacteria (PGPR): A Bioprotectant Bioinoculant for Sustainable Agrobiology. A Review. International Journal of Advanced Research in Biological Sciences, 4, 123-142.
https://doi.org/10.22192/ijarbs.2017.04.05.014
[55]
Kenneth, O.C., Nwadibe, E.C., Kalu, A.U. and Unah, U.V. (2019) Plant Growth Promoting Rhizobacteria (PGPR, A Novel Agent for Sustainable Food Production). American Journal of Agricultural and Biological Sciences, 14, 35-54.
https://doi.org/10.3844/ajabssp.2019.35.54
[56]
Wang, F.Q., Wang, E.T., Zhang, Y.F. and Chen, W.X. (2006) Characterization of Rhizobia Isolated from Albizia spp. in Comparison with Microsymbionts of Acacia spp. and Leucaena leucocephala Grown in China. Systematic and Applied Microbiology, 29, 502-517. https://doi.org/10.1016/j.syapm.2005.12.010
[57]
Boakye, E.Y., Lawson, I.Y.D. and Danso, S.K.A. (2016) Characterization and Diversity of Rhizobia Nodulating Selected Tree Legumes in Ghana. Symbiosis, 69, 89-99. https://doi.org/10.1007/s13199-016-0383-1
[58]
Amrani, S., Noureddine, N.-E., Bhatnagar, T., Argandona, M., Nieto, J.J. and Vargas C. (2010) Phenotypic and Genotypic Characterization of Rhizobia Associated with Acacia saligna (Labill.) Wendl. in Nurseries from Algeria. Systematic and Applied Microbiology, 33, 44-51. https://doi.org/10.1016/j.syapm.2009.09.003