全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于密度泛函理论的二氧化钛光催化研究综述
A Review of Titanium Dioxide Photocatalysis Based on Density Functional Theory

DOI: 10.12677/HJCET.2021.111005, PP. 30-36

Keywords: 二氧化钛改性,密度泛函,VASP,Material Studio,Gaussian
Titanium Dioxide Modification
, Density Functional Theory (DFT), VASP, Material Studio, Gaussian

Full-Text   Cite this paper   Add to My Lib

Abstract:

密度泛函理论(Density Function Theory, DFT)是量子角度诠释催化剂功能的主要方法,在二氧化钛改性计算中应用广泛。在光催化改性的研究中,常配合算法来指导选材或辅助说明研究结果的准确性。本文对三种常用的DFT计算软件(VASP, Material Studio和Gaussian)在二氧化钛光催化领域的应用进行了综述,同时对DFT在该领域的研究前景作了展望。
Density functional theory (DFT) is widely used in titanium dioxide modification calculations and is the main method for interpreting catalysts from a quantum perspective. In the study of photocatalytic modification, algorithms are often used to assist in the accuracy of the results. This paper summarized the application of three commonly used DFT calculation softwares like VASP, Material Studio and Gaussian in photocatalytic modification, and then prospected the research prospect of DFT in this field.

References

[1]  Fujishma, A. and Honda, K. (1972) Electrochemical Photo-Catalysis of Water at Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[2]  Carey, J.H., Lawrence, J. and Tosine, H.M. (1976) Photodechlorina-tion of PCB’s in the Presence of Titanium Dioxide in Aqueous Suspensions. Bulletin of Environmental Contamination and Toxicology, 16, 697-701.
https://doi.org/10.1007/BF01685575
[3]  Chen, X.B., Chen, S.H., Guo, L.J. and Mao, S.S. (2010) Semiconduc-tor-Based Photocatalytic Hydrogen Generation. Chemical Reviews, 110, 6503-6570.
https://doi.org/10.1021/cr1001645
[4]  Wu, L.Z., Chen, B., Li, Z.J. and Tung, C.H. (2014) Enhancement of the Ef-ficiency of Photocatalytic Reduction of Protons to Hydrogen via Molecular Assembly. Accounts of Chemical Research, 47, 2177-2185.
https://doi.org/10.1021/ar500140r
[5]  White, J.L., Baruch, M.F., Pander III, J.E., Hu, Y., Fortmeyer, I.C., Park, J.E., Zhang, T., Liao, K., Gu, J., Yan, Y., et al. (2015) Light-Driven Heterogeneous Reduction of Carbon Dioxide: Pho-tocatalysts and Photoelectrodes. Chemical Reviews, 115, 12888-12935.
https://doi.org/10.1021/acs.chemrev.5b00370
[6]  Habisreutinger, S.N., Schmidt-Mende, L. and Stolarczyk, J.K. (2013) Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angewandte Chemie International Edition, 52, 7372-7408.
https://doi.org/10.1002/anie.201207199
[7]  Tu, W.G., Zou, Y. and Zhou, Z.G. (2014) Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26, 4607-4626.
https://doi.org/10.1002/adma.201400087
[8]  Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C. (2010) Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research, 44, 2997-3027.
https://doi.org/10.1016/j.watres.2010.02.039
[9]  Shi, R., Waterhouse, G.I.N. and Zhang, T.R. (2017) Recent Pro-gress in Photocatalytic CO2 Reduction over Perovskite Oxides. Solar RRL, 1, Article ID: 1700126.
https://doi.org/10.1002/solr.201700126
[10]  Bai, S., Jiang, J., Zhang, Q. and Xiong, Y.J. (2015) Steering Charge Kinetics in Photocatalysis: Intersection of Materials Syntheses, Characterization Techniques and Theoretical Simulations. Chemical Society Reviews, 44, 2893-2939.
https://doi.org/10.1039/C5CS00064E
[11]  Tong, H., Ouyang, S.X., Bi, Y.P., Umezawa, N., Oshikiri, M. and Ye, J.H. (2012) Nano-Photocatalytic Materials: Possibilities and Challenges. Advanced Materials, 24, 229-251.
https://doi.org/10.1002/adma.201102752
[12]  Liu, G., Yang, H.G., Pan, J., Yang, Y.Q. and Cheng, H.-M. (2014) Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 114, 9559-9612.
https://doi.org/10.1021/cr400621z
[13]  Bai, S., Wang, L.L. and Xiong, Y.J. (2017) Facet-Engineered Surface and Interface Design of Photocatalytic Materials. Advanced Science, 4, Article ID: 1600216.
https://doi.org/10.1002/advs.201600216
[14]  Ahmed, A.Y., Kandiel, T.A., Oekermann, T. and Bahnemann, D. (2011) Photocatalytic Activities of Different Well-Defined Single Crystal TiO2 Surfaces: Anatase versus Rutile. The Journal of Physical Chemistry Letters, 2, 2461-2465.
https://doi.org/10.1021/jz201156b
[15]  Katal, R., Ma-sudy-Panah, S., Tanhaei, M. and Hu, J.Y. (2020) A Review on the Synthesis of the Various Types of Anatase TiO2 Fac-ets and Their Applications for Photocatalysis. Chemical Engineering Journal, 384, Article ID: 123384.
https://doi.org/10.1016/j.cej.2019.123384
[16]  宋佳颖. 锑在二氧化钛表面的吸附去除及光催化氧化机理[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2017.
[17]  Tayade, R.J., Surolia, P.K. and Jasra, R.V. (2007) Photocata-lytic Degradation of Dyes and Organic Contaminants in Water Using Nanocrystalline Anatase and Rutile TiO2. Science and Technology of Advanced Materials, 8, 455-462.
https://doi.org/10.1016/j.stam.2007.05.006
[18]  Nayak, A.K., Lee, S., Choi, Y.I., Yoon, H.J., Sohn, Y. and Pra-dhan, D. (2017) Crystal Phase and Size-Controlled Synthesis of Tungsten Trioxide Hydrate Nanoplates at Room Tem-perature: Enhanced Cr(VI) Photoreduction and Methylene Blue Adsorption Properties. ACS Sustainable Chemistry & Engineering, 5, 2741-2750.
https://doi.org/10.1021/acssuschemeng.6b03084
[19]  Nagy, D., Nagy, D., Szilagyi, I.M. and Fan, X.F. (2016) Ef-fect of the Morphology and Phases of WO3 Nanocrystals on Their Photocatalytic Efficiency. RSC Advances, 6, 33743-33754.
https://doi.org/10.1039/C5RA26582G
[20]  Qiu, Y.F., Yang, M.L., Fan, H.B., Zuo, Y.Z., Shao, Y.Y., Xu, Y.J., Yang, X.X. and Yang, S.H. (2011) Nanowires of α- and β-Bi2O3: Phase-Selective Synthesis and Appli-cation in Photocatalysis. CrystEngComm, 13, 1843-1850.
https://doi.org/10.1039/C0CE00508H
[21]  兰茜. 非金属与稀土元素镧共掺杂二氧化钛光催化剂的制备及光催化性能研究[D]: [硕士学位论文]. 上海: 华东理工大学, 2013.
[22]  Li, X., Yu, J.G. and Jaroniec, M. (2016) Hier-archical Photocatalysts. Chemical Society Reviews, 45, 2603-2636.
https://doi.org/10.1039/C5CS00838G
[23]  Gao, C., Wang, J., Xu, H.X. and Xiong, Y.J. (2017) Coordination Chemistry in the Design of Heterogeneous Photocatalysts. Chemical Society Reviews, 46, 2799-2823.
https://doi.org/10.1039/C6CS00727A
[24]  Tanabe, I., Ryoki, T. and Ozaki, Y. (2014) Significant Enhancement of Photocatalytic Activity of Rutile TiO2 Compared with Anatase TiO2 upon Pt Nanoparticle Deposition Studied by Far-Ultraviolet Spectroscopy. Physical Chemistry Chemical Physics, 16, 7749-7753.
https://doi.org/10.1039/C4CP00329B
[25]  Song, C.K., Baek, J., Kim, T.Y., Yu, S., Han, J.W. and Yi, J. (2016) Exploring Crystal Phase and Morphology in the TiO2 Supporting Materials Used for Visible-Light Driven Plasmonic Photocatalyst. Applied Catalysis B: Environmental, 198, 91-99.
https://doi.org/10.1016/j.apcatb.2016.05.047
[26]  Zhao, J., Wang, Y., Li, Y.X., Yue, X. and Wang, C.Y. (2016) Phase-Dependent Enhancement for CO2 Photocatalytic Reduction over CeO2/TiO2 Catalysts. Catalysis Science & Tech-nology, 6, 7967-7975.
https://doi.org/10.1039/C6CY01365A
[27]  Chowdhury, M., Shoko, S., Cummings, F., Fester, V. and Ojumu, T.V. (2017) Charge Transfer between Biogenic Jarosite Derived Fe3+ and TiO2 Enhances Visible Light Photocatalytic Activity of TiO2. Journal of Environmental Sciences, 54, 256-267.
https://doi.org/10.1016/j.jes.2015.11.038
[28]  Chen, G.L., et al. (2017) Exploring the Cooperation Effect of DBD Byproducts and Ag/TiO2 Catalyst for Water Treatment in an APPJ System. Plasma Science and Technology, 19, 68-75.
https://doi.org/10.1088/1009-0630/19/1/015503
[29]  吴宣可. TiO2催化剂的改性及在光解制氢领域的研究综述[J]. 冶金与材料, 2019, 39(6): 17-18.
[30]  Thomas, L.H. (1927) The Calculation of Atomic Fields. Mathematical Pro-ceedings of the Cambridge Philosophical Society, 23, 524-548.
https://doi.org/10.1017/S0305004100011683
[31]  Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864-B871.
https://doi.org/10.1103/PhysRev.136.B864
[32]  Seidl, A., G?rling, A., Vogl, P., Majewski, J.A. and Levy, M. (1996) Generalized Kohn-Sham Schemes and the Band-Gap Problem. Physical Review B, Condensed Matter, 53, 3764-3774.
https://doi.org/10.1103/PhysRevB.53.3764
[33]  李震宇, 贺伟, 杨金龙. 密度泛函理论及其数值方法新进展[J]. 化学进展, 2005, 17(2): 192-202.
[34]  黄美纯. 密度泛函理论的若干进展[J]. 物理学进展, 2000, 20(3): 199-219.
[35]  Payne, M.C., Teter, M.P., Allan, D.C., et al. (1992) Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics, 64, 1045-1097.
https://doi.org/10.1103/RevModPhys.64.1045
[36]  Blochl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953-17979.
https://doi.org/10.1103/PhysRevB.50.17953
[37]  He, Q., Yu, B., Wang, H., et al. (2020) Oxygen Defects Boost Polysulfides Immobilization and Catalytic Conversion: First-Principles Computational Characterization and Experimental Design. Nano Research, 13, 2299-2307.
https://doi.org/10.1007/s12274-020-2850-5
[38]  王黎明. 锐钛矿二氧化钛表面改性相关过程的第一性原理研究[D]: [硕士学位论文]. 开封: 河南大学, 2019.
[39]  Deng, D., Zhuo, J., Dong, J., Vincent, M.N. and Ling, Z. (2020) Bi2O2Se as a Novel Co-Catalyst for Photocatalytic Hydrogen Evolution Reaction. Chemical Engineering Journal, 400, Article ID: 125931.
https://doi.org/10.1016/j.cej.2020.125931
[40]  Treacy, J.P.W., Hussain, H., Torrelles, X., Grinter, D.C., Cabailh, G., Bikondoa, O., Nicklin, C., Selcuk, S., Selloni, A., Lindsay, R. and Thornton, G. (2017) Geometric Structure of Ana-tase TiO2 (101). Physical Review B: Covering Condensed Matter and Materials Physics, 95, Article ID: 075416.
https://doi.org/10.1103/PhysRevB.95.075416
[41]  张正德, 谈蒙露, 任翠兰, 怀平. VaspCZ: 一个提高效率的VASP计算辅助程序[J]. 核技术, 2020, 43(3): 34-40.
[42]  Henkelman, G. and Jonsson, H. (1999) A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. The Journal of Chemi-cal Physics, 111, 7010-7022.
https://doi.org/10.1063/1.480097
[43]  Mathew, K., Sundararaman, R., Letchworth-Weaver, K., et al. (2014) Im-plicit Solvation Model for Density-Functional Study of Nanocrystal Surfaces and Reaction Pathways. The Journal of Chemical Physics, 140, Article ID: 084106.
https://doi.org/10.1063/1.4865107
[44]  Stoliaroff, A., Jobic, S. and Latouche, C. (2018) PyDEF 2.0: An Easy Touse Post-Treatment Software for Publishable Charts Featuring a Graphical User Interface. Journal of Computational Chemistry, 39, 2251-2261.
https://doi.org/10.1002/jcc.25543
[45]  Kohn, W. and Sham, L. (1965) Self-Consistent Equations Including Ex-change and Correlation Effects. Physical Review A, 140, 1133-1138.
https://doi.org/10.1103/PhysRev.140.A1133
[46]  Segall, M.D., Lindan, P.J., Probert, M.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
[47]  郭美丽. 掺杂二氧化钛的电子结构和光学特性的第一性原理研究[D]: [博士学位论文]. 天津: 天津大学, 2013.
[48]  曹雪娟, 刘誉贵, 刘晓凤, 刘攀, 郭鹏. 稀土Sm掺杂TiO2第一性原理计算及光催化性能评价[J]. 化工新型材料, 2019, 47(10): 180-184.
[49]  刘培思, 代广珍, 韩名君. Au掺杂锐钛矿TiO2的光吸收能力第一性原理计算[J]. 山东师范大学学报(自然科学版), 2020, 35(2): 217-223.
[50]  Nazir, B., ur Rehman, U., Arshad, S., et al. (2020) Enhanced Photo-Absorption of Anatase TiO2 with Ni and Eu Doping: A First Principle Study. Materials Today: Proceedings.
https://doi.org/10.1016/j.matpr.2020.05.529
[51]  Li, S.L., Chen, Y.C. and Shi, Q.K. (2018) First-Principles Study of Mn-S Codoped Anatase TiO2. Material Research Express, 5, Article ID: 045005.
https://doi.org/10.1088/2053-1591/aab868
[52]  梁坤, 周军, 吴雷, 宋永辉, 田宇红, 付义乐. 分子模拟技术在新型催化剂设计中的应用[J]. 化工新型材料, 2020, 48(2): 41-45+49.
[53]  王宏强. Materials Studio软件在分子力学中的基础应用[J]. 科技资讯, 2019, 17(31): 17-18.
[54]  Huerta-Aguilar, C.A., Gutiérrez, Y.S.G. and Thangarasu, P. (2020) Crystal Plane Directed Interaction of TiO2 [101] with AgNPs [111] Silver Nanoparticles Enhancing Solar Light Induced Photo-Catalytic Oxidation of Ciprofloxacin: Experimental and Theoretical Studies. Chemical Engineering Jour-nal, 394, 976-991.
https://doi.org/10.1016/j.cej.2020.124286
[55]  陈奕驰. 量子化学计算原理及其应用[J]. 科学咨询(科技·管理), 2020(1): 110-111.
[56]  Bachelet, G.B., Hamann, D.R. and Schlüter, M. (1982) Pseudopotentials That Work: From H to Pu. Physical Review B, 26, 4199-4228.
https://doi.org/10.1103/PhysRevB.26.4199

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133