|
Botanical Research 2021
水杨酸对水稻幼苗生长的影响及其调控机制研究
|
Abstract:
[1] | An, C.F., and Mou, Z.L. (2011) Salicylic Acid and Its Function in Plant Immunity. Journal of Integrative Plant Biology, 53, 412-428. |
[2] | Zhang, Y.L. and Li, X. (2019) Salicylic Acid: Biosynthesis, Perception, and Contributions to Plant Immunity. Current Opinion in Plant Biology, 50, 29-36. https://doi.org/10.1016/j.pbi.2019.02.004 |
[3] | Dinler, B.S., Demir, E. and Kompe, Y.O. (2014) Regulation of Auxin, Abscisic Acid and Salicylic Acid Levels by Ascorbate Application under Heat Stress in Sensitive and Tolerant Maize Leaves. Acta Biologica Hungarica, 65, 469-480. https://doi.org/10.1556/abiol.65.2014.4.10 |
[4] | Rai, K.K., Pandey, N. and Rai, S.P. (2020) Salicylic Acid and Nitric Oxide Signaling in Plant Heat Stres. Physiologia Plantarum, 168, 241-255. https://doi.org/10.1111/ppl.12958 |
[5] | Guo, B., Liu, C., Liang, Y.C., Li, N.Y. and Fu, Q.L. (2019) Salicylic Acid Signals Plant Defence against Cadmium Toxicity. International Journal of Molecular Sciences, 20, 2960. https://doi.org/10.3390/ijms20122960 |
[6] | Liu, Z.P., Ding, Y.F., Wang, F.J., Ye, Y.Y. and Zhu, C. (2016) Role of Salicylic Acid in Resistance to Cadmium Stress in Plants. Plant Cell Reports, 35, 719-731. https://doi.org/10.1007/s00299-015-1925-3 |
[7] | Nozue, K., Devisetty, U.K., Lekkala, S., Mueller-Moule, P., Bak, A., Casteel, C.L. and Maloof, J.N. (2018) Network Analysis Reveals a Role for Salicylic Acid Pathway Components in Shade Avoidance. Plant Physiology, 178, 1720-1732. https://doi.org/10.1104/pp.18.00920 |
[8] | Pasternak, T., Groot, E.P., Kazantsev, F.V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V., Palme, K. and Mironova, V.V. (2019) Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiology, 180, 1725-1739. https://doi.org/10.1104/pp.19.00130 |
[9] | Rivas-San Vicente, M. and Plasencia, J. (2011) Salicylic Acid beyond Defence: Its Role in Plant Growth and Development. Journal of Experimental Botany, 62, 3321-3338. https://doi.org/10.1093/jxb/err031 |
[10] | Cao, X., Yang, H.L., Shang, C.Q., Ma, S., Liu, L. and Cheng, J.L. (2019) The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. International Journal of Molecular Sciences, 20, 6343. https://doi.org/10.3390/ijms20246343 |
[11] | Zhang, T., Li, R., Xing, J., Yan, L., Wang, R. and Zhao, Y. (2018) The YUCCA-auxin-wox11 Module Controls Crown Root Development in Rice. Frontiers in Plant Science, 9, 523. https://doi.org/10.3389/fpls.2018.00523 |
[12] | Adamowski, M. and Friml, J. (2015) PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell, 27, 20-32. https://doi.org/10.1105/tpc.114.134874 |
[13] | Inahashi, H., Shelley, I.J., Yamauchi, T., Nishiuchi, S., Takaha-shi-Nosaka, M., Matsunami, M., Ogawa, A., Noda, Y., and Inukai, Y. (2018) OsPIN2, Which Encodes a Member of the Auxin Efflux Carrier Proteins, Is Involved in Root Elongation Growth and Lateral Root Formation Patterns via the Regulation of Auxin Distribution in Rice. Physiologia Plantarum, 164, 216-225. https://doi.org/10.1111/ppl.12707 |
[14] | Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, A., Wang, J.Y., Moritz, T., Grebe, M., Benfey, P.N., Sandberg, G. and Ljung, K. (2009). An Auxin Gradient and Maximum in the Arabidopsis Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. Plant Cell, 21, 1659-1668.
https://doi.org/10.1105/tpc.109.066480 |
[15] | Zhao, F.Y., Wang, K., Zhang, S.Y., Ren, J., Liu, T. and Wang, X. (2014) Crosstalk between ABA, Auxin, MAPK Signaling, and the Cell Cycle in Cadmium-Stressed Rice Seedlings. Acta Physiologiae Plantarum, 36, 1879-1892.
https://doi.org/10.1007/s11738-014-1564-2 |
[16] | 赵宜婷, 武丽霞, 詹晓平, 等. 水杨酸抑制生长素运输而调节Acuce水稻根的生长[J]. 西南农业学报, 2019, 32(4): 770-775. |
[17] | 罗静静, 张亚飞, 赵永飞, 等. 水杨酸对草莓SnRK1活性及植株生长的影响[J]. 植物生理学报, 2018, 54(1): 113-120. |
[18] | 黄婷婷, 牛志浩, 丁振山, 等. 水杨酸对玉米种子萌发早期耐旱性的影响[J]. 种子, 2017, 36(2): 33-37. |
[19] | Chen, Y.N., Fan, X.R., Song, W.J., Zhang, Y.L. and Xu, G.H. (2012) Over-Expression of OsPIN2 Leads to Increased Tiller Numbers, Angle and Shorter Plant Height through Suppression of OsLAZY1. Plant Biotechnology Journal, 10, 139-149. https://doi.org/10.1111/j.1467-7652.2011.00637.x |