全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水杨酸对水稻幼苗生长的影响及其调控机制研究
Effects of Salicylic Acid on the Growth of Rice Seedlings and Its Regulation Mechanism

DOI: 10.12677/BR.2021.101005, PP. 27-34

Keywords: 水杨酸,水稻幼苗,生长素,DR5::GUS
Salicylic Acid
, Rice Seedling, Auxin, DR5::GUS

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究不同浓度的水杨酸(salicylic acid, SA)对水稻幼苗生长的影响及其调控机制,本研究采用DR5::GUS转基因水稻(Oryza sativa L.,中花11)为研究材料,观察不同浓度SA对水稻生长的影响,同时检测其中生长素的时空分布变化,以及检测生长素合成运输基因表达水平的变化。研究结果显示,低浓度SA (10 μM)促进水稻幼苗生长,高浓度SA (1 mM)抑制水稻幼苗的生长。低浓度SA和高浓度SA的处理影响了水稻幼苗根中生长素的时空分布状态,并且影响了生长素合成和运输基因的表达水平。因此,不同浓度的SA可能通过调控了生长素的时空分布参与调控了水稻幼苗的生长调节过程。
In order to investigate the different concentration of salicylic acid (SA) on rice seedling growth and its regulatory mechanism, this study used DR5::GUS transgenic rice (Oryza sativa L., Zhonghua 11) as material to observe the effect of different concentrations of SA on rice growth, on auxin spatial and temporal distribution, and on expression level of auxin synthesis and transport genes. The results show that low concentration of SA (10 μM) promotes the growth of rice seedlings, and high concentration of SA (1 mM) inhibits the growth of rice seedlings. The treatment of low concentration of SA and high concentration of SA affects the spatial and temporal distribution of auxin in the roots of rice seedlings, and affects the expression level of the auxin synthesis and transport genes. Therefore, different concentrations of SA may be involved in the regulation of rice seedling growth by regulating the spatial and temporal distribution of auxin.

References

[1]  An, C.F., and Mou, Z.L. (2011) Salicylic Acid and Its Function in Plant Immunity. Journal of Integrative Plant Biology, 53, 412-428.
[2]  Zhang, Y.L. and Li, X. (2019) Salicylic Acid: Biosynthesis, Perception, and Contributions to Plant Immunity. Current Opinion in Plant Biology, 50, 29-36.
https://doi.org/10.1016/j.pbi.2019.02.004
[3]  Dinler, B.S., Demir, E. and Kompe, Y.O. (2014) Regulation of Auxin, Abscisic Acid and Salicylic Acid Levels by Ascorbate Application under Heat Stress in Sensitive and Tolerant Maize Leaves. Acta Biologica Hungarica, 65, 469-480.
https://doi.org/10.1556/abiol.65.2014.4.10
[4]  Rai, K.K., Pandey, N. and Rai, S.P. (2020) Salicylic Acid and Nitric Oxide Signaling in Plant Heat Stres. Physiologia Plantarum, 168, 241-255.
https://doi.org/10.1111/ppl.12958
[5]  Guo, B., Liu, C., Liang, Y.C., Li, N.Y. and Fu, Q.L. (2019) Salicylic Acid Signals Plant Defence against Cadmium Toxicity. International Journal of Molecular Sciences, 20, 2960.
https://doi.org/10.3390/ijms20122960
[6]  Liu, Z.P., Ding, Y.F., Wang, F.J., Ye, Y.Y. and Zhu, C. (2016) Role of Salicylic Acid in Resistance to Cadmium Stress in Plants. Plant Cell Reports, 35, 719-731.
https://doi.org/10.1007/s00299-015-1925-3
[7]  Nozue, K., Devisetty, U.K., Lekkala, S., Mueller-Moule, P., Bak, A., Casteel, C.L. and Maloof, J.N. (2018) Network Analysis Reveals a Role for Salicylic Acid Pathway Components in Shade Avoidance. Plant Physiology, 178, 1720-1732.
https://doi.org/10.1104/pp.18.00920
[8]  Pasternak, T., Groot, E.P., Kazantsev, F.V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V., Palme, K. and Mironova, V.V. (2019) Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiology, 180, 1725-1739.
https://doi.org/10.1104/pp.19.00130
[9]  Rivas-San Vicente, M. and Plasencia, J. (2011) Salicylic Acid beyond Defence: Its Role in Plant Growth and Development. Journal of Experimental Botany, 62, 3321-3338.
https://doi.org/10.1093/jxb/err031
[10]  Cao, X., Yang, H.L., Shang, C.Q., Ma, S., Liu, L. and Cheng, J.L. (2019) The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. International Journal of Molecular Sciences, 20, 6343.
https://doi.org/10.3390/ijms20246343
[11]  Zhang, T., Li, R., Xing, J., Yan, L., Wang, R. and Zhao, Y. (2018) The YUCCA-auxin-wox11 Module Controls Crown Root Development in Rice. Frontiers in Plant Science, 9, 523.
https://doi.org/10.3389/fpls.2018.00523
[12]  Adamowski, M. and Friml, J. (2015) PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell, 27, 20-32.
https://doi.org/10.1105/tpc.114.134874
[13]  Inahashi, H., Shelley, I.J., Yamauchi, T., Nishiuchi, S., Takaha-shi-Nosaka, M., Matsunami, M., Ogawa, A., Noda, Y., and Inukai, Y. (2018) OsPIN2, Which Encodes a Member of the Auxin Efflux Carrier Proteins, Is Involved in Root Elongation Growth and Lateral Root Formation Patterns via the Regulation of Auxin Distribution in Rice. Physiologia Plantarum, 164, 216-225.
https://doi.org/10.1111/ppl.12707
[14]  Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, A., Wang, J.Y., Moritz, T., Grebe, M., Benfey, P.N., Sandberg, G. and Ljung, K. (2009). An Auxin Gradient and Maximum in the Arabidopsis Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. Plant Cell, 21, 1659-1668.
https://doi.org/10.1105/tpc.109.066480
[15]  Zhao, F.Y., Wang, K., Zhang, S.Y., Ren, J., Liu, T. and Wang, X. (2014) Crosstalk between ABA, Auxin, MAPK Signaling, and the Cell Cycle in Cadmium-Stressed Rice Seedlings. Acta Physiologiae Plantarum, 36, 1879-1892.
https://doi.org/10.1007/s11738-014-1564-2
[16]  赵宜婷, 武丽霞, 詹晓平, 等. 水杨酸抑制生长素运输而调节Acuce水稻根的生长[J]. 西南农业学报, 2019, 32(4): 770-775.
[17]  罗静静, 张亚飞, 赵永飞, 等. 水杨酸对草莓SnRK1活性及植株生长的影响[J]. 植物生理学报, 2018, 54(1): 113-120.
[18]  黄婷婷, 牛志浩, 丁振山, 等. 水杨酸对玉米种子萌发早期耐旱性的影响[J]. 种子, 2017, 36(2): 33-37.
[19]  Chen, Y.N., Fan, X.R., Song, W.J., Zhang, Y.L. and Xu, G.H. (2012) Over-Expression of OsPIN2 Leads to Increased Tiller Numbers, Angle and Shorter Plant Height through Suppression of OsLAZY1. Plant Biotechnology Journal, 10, 139-149.
https://doi.org/10.1111/j.1467-7652.2011.00637.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133