全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用非特异性免疫促进剂开启抗病毒抗肿瘤治疗革命大门
Open the Therapeutic Revolution Door of Antiviral Antitumor by Improving Systemic Non-Specific Immunity

DOI: 10.12677/WJCR.2021.111003, PP. 12-23

Keywords: 帕米卡,抗肿瘤,抗感染、双链RNA,非特异性免疫
Pamica
, Antiviruses, Antitumors, DSRNA, Non-Specific Immunity

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:了解帕米卡体外细胞生物学水平的作用及其机理。方法:HEK-Blue hTLR3细胞、HEK-Blue hTLR4细胞经信号传导检定相应配体试验;RT-qPCR (实时荧光定量PCR技术)试验,细胞活力试验,单层细胞增殖试验,Annexin V和PI双染色法定量试验,细胞分裂周期分析试验,细胞划痕实验,细胞迁移小室和侵袭试验。结果:帕米卡是TLR3、4受体的配体,极其显著地提高LL/2 and A540细胞TLR3 mRNA水平,是对受体敏感性的标志,极其显著地抑制肿瘤细胞存活率,显著地减少肿瘤存活细胞数,封闭 肿瘤细胞在G1期继续分裂使肿瘤细胞凋亡,显著降低肿瘤细胞的移动和侵袭,抑制了肿瘤转移。结论:帕米卡是一个能够引起非特异免疫响应显著增强机体抗肿瘤免疫的敏感性、抑制肿瘤细胞增殖、降低肿瘤细胞分裂和转移的有潜力的广谱抗癌抗病毒制剂。
Purpose: To comprehend of Pamica on antiviral and antitumor mechanism of action at cytobiology in vitro. Methods: Screening of human TLR3 TLR4 agonist test with HEK-Blue hTLR3, HEK-Blue hTLR4 cells, RT-QPCR analysis, Cell viability assay, Monolayer cell proliferation, Annexin V-FITC double staining assay, Cell cycle analysis, Scratch wound healing assays, Transwell migration and invasion assays. Results: Pamica activates strongly TLR3 expressing cell and also TLR4 expressing cell; increase TLR3 mRAN expression in LL/2 and A540 cells, it is an indicator of susceptibility to Pamica; can inhibit LL/2 and A540 cells proliferation, promoting apoptosis, inhibit cell division, migration and invasion in G1 phase, prevent tumor cell metastasis in vitro. Conclusion: Pamica is a potential broad spectrum anticancer antiviral agent by enhancing TLR3 susceptibility, inhibiting tumor cell proliferation, division and metastasis.

References

[1]  林海祥, 刘芳, 孙晓林. 用非特异性免疫促进剂开启抗病毒抗肿瘤治疗革命大门——帕米卡帕米卡?制剂抗病毒抗肿瘤作用及瞻望[J]. 自然科学, 2020, 8(5): 435-441.
[2]  林海祥, 刘芳, 陈丽青, 孙晓林. 用非特异性免疫促进剂开启抗病毒抗肿瘤治疗革命大门——帕米卡?对几种荷瘤小白鼠的效果观察[J]. 世界肿瘤研究, 2020, 10(4): 65-77.
[3]  Wu, Y.D., Huang, W., Chen, L.Q., et al. (2019) Anti-Tumor Outcome Evaluation Against Non-Small Cell Lung Cancer in vitro and in vivo Using PolyI:C as Nucleic Acid Therapeutic Agent. American Journal of Translational Research, 11, 1919-1937.
[4]  Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[5]  Ridnour, L.A., Cheng, R.Y., Switzer, C.H., et al. (2013) Molecular Pathways: Toll-Like Receptors in the Tumor Microenvironment—Poor Prognosis or New Therapeutic Opportunity. Clinical Cancer Research, 19, 1340-1346.
https://doi.org/10.1158/1078-0432.CCR-12-0408
[6]  张树政, 金城, 杜昱光. 糖生物工程[M]. 北京: 化学工业出版社, 2012.
[7]  Hoffmann, J.A. (1995) Innate Immunity of Insects. Current Opinion in Immunology, 7, 4-10.
https://doi.org/10.1016/0952-7915(95)80022-0
[8]  Steunman, R.M. and Cohn, Z.A. (1973) Identification of Novel Cell Type in Peripheral Lymphoid Organs of Mice: I. Morphology, Quantitation, Tissue Distribution. Journal of Experimental Medicine, 137, 1142-1162.
https://doi.org/10.1084/jem.137.5.1142
[9]  Ito, T., Amakawa, R., Fukuhara, S., et al. (2002) Roles of Toll-like Receptors in Natural Interferon-Producing Cells as Sensors in Immune Surveillance. Human Immunology, 63, 1120-1125.
https://doi.org/10.1016/S0198-8859(02)00750-4
[10]  Pisetsky, D.S., Gauley, J. and Ullal, A.J. (2011) HMGB1 and Microparticles as Mediators of the Immune Response to Cell Death. Antioxidants & Redox Signaling, 15, 2209-2219.
https://doi.org/10.1089/ars.2010.3865

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133