|
- 2018
一种基于视觉特征组合构造的零样本学习方法Keywords: 零样本学习 图像分类 非相似表示 数据预处理 Abstract: 零样本学习是机器学习和图像识别领域重要的研究热点.零样本学习方法通常利用未见类与可见类之间的类别语义信息,将从可见类样本学习到的知识转移到未见类,实现对未见类样本的分类识别.提出了一种基于视觉特征组合构造的零样本学习方法,采用特征组合的方式构造产生大量未见类样例特征,将零样本学习问题转化为标准的监督学习分类问题.该方法模拟了人类的联想认知过程,其主要包括4步:特征-属性关系提取、样例构造、样例过滤、特征域适应.在可见类样本上抽取类别属性与特征维度的对应关系;利用特征-属性关系,通过视觉特征的组合构造的方式,产生未见类样例;引入非相似表示,过滤掉不合理的未见类样例;提出半监督特征域适应和无监督特征域适应,实现未见类样例的线性转换,产生更有效的未见类样例.在3个基准数据集(AwA,AwA2和SUN)上的实验结果显示,该方法效能优越,在数据集AwA上获得了当前最优的Top-1分类正确率82.6%.实验结果证明了该方法的有效性和先进性
|