|
- 2014
无界域上带奇异扰动的非自治FitzHugh-Nagumo系统拉回吸引子的存在性
|
Abstract:
研究无界区域上带奇异扰动的非自治FitzHugh-Nagumo系统的动力学行为,其中非线性项依赖于空间变量x.为克服Sobolev嵌入缺乏紧性,利用一致“tail”估计,证明系统所对应的过程是拉回渐近紧的,从而说明拉回吸引子的存在性.
The dynamical behavior of the singularly perturbed non-autonomous FitzHugh-Nagumo systems defined on unbounded domains is studied,where nonlinear terms are depending on the space variable x. In order to overcome the lacking compact of Sobolev imbedding,it is proved the process associated with the system is pullback asymptotic compactness by using uniform estimates on the tails of solutions,and show the existence of a pullback attractor