|
- 2014
一类高阶线性微分方程解在角域上的增长性
|
Abstract:
主要研究了高阶微分方程 f(k)+ Ak -1 f(k -1)+…+ A1 f '+ A0 f =0的解在角域上的增长性,其中 A0,Aj (1≤j≤k -1)为亚纯函数,且假设 A0以有限复数 a 为亏值,ρ(Aj )=0(1≤j≤k -1),通过给定适当的条件,证明了齐次线性微分方程的任一非零解在某些角域上的增长级为无穷。
The growth of solutions of the higher order differential equation f( k)+ Ak - 1 f( k - 1)+ … + A0 f = 0 is investi-gated in angular domains,where A0 and Aj(1≤j≤k - 1)are meromorphic functions,assuming that A0 has a finite deficient value a and ρ(Aj )= 0(1≤j≤k - 1). When some conditions is given,it is proved that every solution f??0 of the equation is of infinite order in some given angular domains