|
- 2013
向量值亚纯函数的亏量
|
Abstract:
利用从复平面C到无限维Hilbert空间E的无限维向量值亚纯函数的Nevanlinna基本理论,对无限维向量值亚纯函数的亏量进行了研究,建立了无限维向量值亚纯函数的亏量和与导函数零点的亏量之间的关系,所得结论推广了关于有限维向量值亚纯函数的相关结果.
The Nevanlinna theory of infinite dimensional vector-valued meromorphic functions from the complex plane C to infinite dimensional Hilbert space E is introduced,and the deficiency of infinite dimensional vector-valued meromorphic functions is studied.The relation between the deficiency sum of infinite dimensional vector-valued meromorphic functions and that of the deficiency of zero point of derivative functions is established.The results about finite dimensional vector-valued meromorphic functions have been extended