全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

基于类加权YOLO网络的水下目标检测

DOI: 10.3969/j.issn.1001-4616.2020.01.019

Keywords: 水下目标,YOLO,类加权损失,自适应维度聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于水下目标检测面临着图像模糊、尺度多样化、复杂背景等问题,给水下目标检测应用带来很多挑战.本文提出了一种基于类加权YOLO网络的水下目标检测方法,主要思想是在深度网络YOLO的基础上,构造了类加权损失函数,来平衡样本难易程度以获得更好的效果,并引入了目标框自适应维度聚类方法,进一步提升了检测性能.实验结果表明,本文算法与传统的YOLO网络模型相比,在每幅图片包含近20个目标的密集目标检测任务中,能够将平均准确率从71.2%提升至74.1%,召回率由71.1%提升到78.3%

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133