全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2012 

概化理论偏态分布数据方差分量标准误估计
The Estimating Standard Error of Variance Component for Skewed Distribution Data in Generalizability Theory

Keywords: 概化理论,偏态分布数据,方差分量标准误估计,Bootstrap方法,Monte Carlo模拟
概化理论 偏态分布数据 方差分量标准误估计 Bootstrap方法 Monte Carlo模拟
,概化理论 偏态分布数据 方差分量标准误估计 Bootstrap方法 Monte Carlo模拟,概化理论 偏态分布数据 方差分量标准误估计 Bootstrap方法 Monte Carlo模拟,概化理论 偏态分布数据 方差分量标准误估计 Bootstrap方法 Monte Carlo模拟,概化理论 偏态分布数据 方差分量标准误估计 Bootstrap方法 Monte Carlo模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用 GH 分布性质,采用 Monte Carlo 数据模拟技术,模拟生成一定偏度的偏态分布数据,运用Traditional方法、Jackknife方法、Bootstrap方法和MCMC方法估计概化理论偏态分布数据的方差分量标准误,探讨了数据的不同偏度对概化理论方差分量标准误估计的影响.研究结果显示: Jackknife 方法估计偏态分布数据的方差分量标准误性能较差, Traditional和MCMC方法尚可, Bootstrap方法标准误偏差相对较小,且偏态分布数据的偏度对概化理论方差分量标准误估计有影响, Bootstrap方法对于偏态分布数据表现出良好的“适应性”,偏度对其影响较小.
To explore how skew has effect on estimating standard error of variance component for Generalizability Theory. Using nature of Generalized Hyperbolic distribution, the study adopts Monte Carlo data simulation technique to simulate skewed distribution data. Traditional method, bootstrap method, jackknife method and Markov Chain Monte Carlo (MCMC)method were used to compare estimating standard error of variance component for skewed distribution data in Generalizability Theory. Jackknife method is not good to estimate standard error of variance component for skewed distribution data. Traditional method and Markov Chain Monte Carlo (MCMC)method were not very suitable, but can be accepted and bootstrap method is better. Skew of skewed distribution data have a effect on estimating standard error of variance component. Bootstrap method is a good adaptability to estimate standard error of variance component for Generalizability Theory. Skew has less effect on Bootstrap method

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133