全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

2D wind clumping in hot, massive stars from hydrodynamical line-driven instability simulations using a pseudo-planar approach

DOI: 10.1051/0004-6361/201731718

Full-Text   Cite this paper   Add to My Lib

Abstract:

Context. Clumping in the radiation-driven winds of hot, massive stars arises naturally due to the strong, intrinsic instability of line-driving (the line-deshadowing instability, hereafter LDI). But LDI wind models have so far mostly been limited to 1D, mainly because of the severe computational challenges regarding calculation of the multi-dimensional radiation force.Aim. In this paper we simulate and examine the dynamics and multi-dimensional nature of wind structure resulting from the LDI.Methods. We introduce a pseudo-planar, box-in-a-wind method that allows us to efficiently compute the line force in the radial and lateral directions, and then use this approach to carry out 2D radiation-hydrodynamical simulations of the time-dependent wind.Results. Our 2D simulations show that the LDI first manifests itself by mimicking the typical shell structure seen in 1D models, but that these shells quickly break up into complex 2D density and velocity structures, characterized by small-scale density “clumps” embedded in larger regions of fast and rarefied gas. Key results of the simulations are that density variations in the well-developed wind are statistically quite isotropic and that characteristic length scales are small; a typical clump size is clR*~ 0.01 at 2R*, thus also resulting in rather low typical clump masses mcl ~ 1017 g. Overall, our results agree well with the theoretical expectation that the characteristic scale for LDI generated wind-structure is on the order of the Sobolev length Sob. We further confirm some earlier results that lateral “filling in” of radially compressed gas leads to somewhat lower clumping factors in 2D simulations than in comparable 1D models. We conclude by discussing an extension of our method toward rotating LDI wind models that exhibit an intriguing combination of large- and small-scale structures extending down to the wind base

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133