全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Automatika  2020 

Fast brain tumour segmentation using optimized U-Net and adaptive thresholding

DOI: https://doi.org/10.1080/00051144.2020.1760590

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brain tumour segmentation evolved as the dominant task in brain image processing. Most of the contemporary research proposals devise deep neural networks and sparse representation to address this issue. These methods inherently suffer from high computational cost and additional memory requirements. Thus, optimization of the computational cost became a challenging task for the contemporary research. This paper discusses an optimized U-Net model with post-processing for fast brain tumour segmentation. The proposed model includes two phases: training and testing. Training phase computes weights for optimized U-Net and an adaptive threshold value. In the testing phase, a trained U-Net model predicts a rough tumour segment. Adaptive thresholding grabs the final tumour with improved segmentation results. We have considered a brain tumour dataset of 3064 images with three types of brain tumours for evaluation. Our proposed model exhibits superior results than the existing models in terms of recall and dice similarity metrics. It exhibits competitive performance in accuracy and precision. Moreover, the proposed model outperforms its competitive models in training time

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133