全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

Ligand-Target Prediction by Structural Network Biology Using nAnnoLyze

DOI: 10.1371/journal.pcbi.1004157

Keywords: Proteomes,MAPK signaling cascades,Protein structure databases,Protein interaction networks,Proteomic databases,Proteases,Protein structure,Protein structure prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Target identification is essential for drug design, drug-drug interaction prediction, dosage adjustment and side effect anticipation. Specifically, the knowledge of structural details is essential for understanding the mode of action of a compound on a target protein. Here, we present nAnnoLyze, a method for target identification that relies on the hypothesis that structurally similar binding sites bind similar ligands. nAnnoLyze integrates structural information into a bipartite network of interactions and similarities to predict structurally detailed compound-protein interactions at proteome scale. The method was benchmarked on a dataset of 6,282 pairs of known interacting ligand-target pairs reaching a 0.96 of area under the Receiver Operating Characteristic curve (AUC) when using the drug names as an input feature for the classifier, and a 0.70 of AUC for “anonymous” compounds or compounds not present in the training set. nAnnoLyze resulted in higher accuracies than its predecessor, AnnoLyze. We applied the method to predict interactions for all the compounds in the DrugBank database with each human protein structure and provide examples of target identification for known drugs against human diseases. The accuracy and applicability of our method to any compound indicate that a comparative docking approach such as nAnnoLyze enables large-scale annotation and analysis of compound–protein interactions and thus may benefit drug development

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133