全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Contribution of Good Agricultural Practices to Soil Biodiversity

DOI: 10.4236/oje.2021.111007, PP. 75-85

Keywords: Good Agricultural Practices, Soil Biodiversity, Earthworms, Microorganisms, Soil Enzymes, Organic Farm, Soil Moisture

Full-Text   Cite this paper   Add to My Lib

Abstract:

At present time when climate change has negative effect on soil moisture and can decrease significantly the productivity, good agricultural practises have a high importance via their direct influence on soil properties, regimes and biodiversity. Objectives of this study have been focused on the assessment of good agricultural practises in different soil cultivation types: conventional, minimum till, mulch, no-till and organic farming. Method used was based on two case study areas where organic and/or minimal farming systems have been applied. As a control, we chose soil with traditional cultivation. In organic farm, we evaluated earthworms; their amount and status and in farm with different types of cultivation we evaluated the microbial activity to assess the biodiversity conditions. Basic soil properties and soil structure have been set to be able to assess the influence of good agricultural practises on soil environment. Our study shows positive effect of these practises on soil moisture content, biodiversity and soil structure stability. These findings can be used for further studies determining the ways of soil cultivation in harmony with nature—in sustainable way.

References

[1]  World Wide Fund for Nature.
https://www.worldwildlife.org/pages/what-is-biodiversity
[2]  ECA (2020) Biodiversity on Farmland: CAP Contribution Has Not Halted the Decline. ECA Special Report Pursuant to Article 287(4), Second Subparagraph, TFEU. 58 p.
[3]  Wall, D.H., Nielsen, U.N. and Six, J. (2015) Soil Biodiversity and Human Health. Nature, 528, 69-76.
https://doi.org/10.1038/nature15744
[4]  Briones, M.J.I. and Schmidt, O. (2017) Conventional Tillage Decreases the Abundance and Biomass of Earthworms and Alters Their Community Structure in a Global Meta-Analysis. Global Change Biology, 23, 4396-4419.
https://doi.org/10.1111/gcb.13744
[5]  Záhora, J. (2020) Pôda stráca kontrolu nad stabilitou pôdnych agregátov (Soil Losses Control over the Stability of Soil Aggregates). Naše Pole 1/2020, 14-16.
[6]  Šarapatka, B. (1996) Vliv zemědělských systémů na aktivitu půdních enzymů. In Využitie integrovanej rastlinnej výroby v podmienkach Slovenska: Zborník zo seminára s medzinárodnou účasťou. Nitra: Dom technniky ZSVTS, 1996, s. 48-51.
[7]  Kovácsová, S. (2011) Enzymatická aktivita pôdnych mikroorganizmov (Enzymatic Activity of Soil Microorganisms). SPU Nitra, Slovakia.
[8]  García, C. and Hernández, T. (2000) Research and Perspectives of Soil Enzymology in Spain. Tipografia, San Francisco, 352 p.
[9]  Liu, K.L., Lai, C.M. and Helen, W. (2002) Soil Enzyme Activities as Indicators of Agricultural Soil Quality. Symposium 17th World Congress of Soil Science, Vol. 1386, 1-6.
[10]  Mikanová, O., Friedlová, M. and Šimon, T. (2009) The Influence of Fertilisation and Crop Station on Soil Microbial Characteristics in the Long-Term Field Experiment. Plant Soil Environment, 55, 11-16.
https://doi.org/10.17221/326-PSE
[11]  Mijangos, I. and Garbisu, C. (2010) Consequences of Soil Sampling Depth during the Assessment of the Effects of Tillage and Fertilization on Soil Quality: A Common Oversight. Soil & Tillage Research, 109, 169-173.
https://doi.org/10.1016/j.still.2010.05.001
[12]  Šíša, R. (1993) Enzymová aktivita půdy jako ukazovatel její biologické aktivity. Rostlinná výroba, 39, 817-825.
[13]  Senwo, Z.N., Ranatunga, T.D., Tazisong, I.A., et al. (2007) Phosphatase Activity of Ultisols and Relationship to Soil Fertility Indices. Journal of Food, Agriculture & Environment, 5, 262-266.
[14]  Jouquet, P., Dauber, J., Lagerlof, J., Lavelle, P. and Lepage, M. (2006) Soil Invertebrates as Ecosystem Engineers: Intended and Accidental Effects on Soil and Feedback Loops. Applied Soil Ecology, 32, 153-164.
https://doi.org/10.1016/j.apsoil.2005.07.004
[15]  Bacha, B. and Sahoo, S. (2019) Effect of Different Land Use Practices on Earthworm Abundance and Soil Properties. International Journal of Science and Research, 9, 1290-1294.
https://www.ijsr.net/search_index_results_paperid.php?id=SR20323102830
[16]  Zangerlé, A., Pando, A. and Lavelle, P. (2011) Do Earth-Worms and Roots Cooperate to Build Soil Macroaggregates? A Microcosm Experiment. Geoderma, 167-168, 303-309.
https://doi.org/10.1016/j.geoderma.2011.09.004
[17]  Schon, N.L., Mackay, A.D., Gray, R.A., Van Koten, C. and Dodd, M.B. (2017) Influence of Earthworm Abundance and Diversity on Soil Structure and the Implications for Soil Services throughout the Season. Pedobiologia, 62, 41-47.
https://doi.org/10.1016/j.pedobi.2017.05.001
[18]  Brown, G.G., Barois, I. and Lavelle, P. (2000) Regulation of Soil Organic Matter Dynamics and Microbial Activity in the Drilosphere and the Role of Interactions with Other Edaphic Functional Domains. European Journal of Soil Biology, 36, 177-198.
https://doi.org/10.1016/S1164-5563(00)01062-1
[19]  Christensen, O. and Mather, J.G. (1990) Dynamics of Lumbricid Earthworm Cocoons in Relation to Habitat Conditions at Three Different Arable Sites. Pedobiologia, 34, 227-238.
[20]  Sainju, U.M., Caesar, A.J., West, M., et al. (2014) Soil-Aggregating Bacterial Community as Affected by Irrigation, Tillage, and Cropping System in the Northern Great Plains. The Soil Science, 179, 11-20.
https://doi.org/10.1097/SS.0000000000000036
[21]  Houšková, B., Makovníková, J., Šlinský, J. and Bušo, R. (2019) Ecological Farming: An Example of Sustainable Management. 9th International Congress, Tirana, 26-28 September 2019, 55.
[22]  The 2030 Agenda for Sustainable Development and the SDGs.
https://ec.europa.eu/environment/sustainable-development/SDGs/index_en.htm
[23]  (2020) Factsheet: EU 2030 Biodiversity Strategy.
https://ec.europa.eu/commission/presscorner/detail/en/fs_20_906
[24]  IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome.
[25]  Hraško, J., et al. (1962) Rozbory pôd (Soil Analyzes). Slovenské vydavateľstvo pôdohospodárskej literatúry. 342 p.
[26]  Benefield, C.B., Howard, P.J.A. and Doreen, M.H. (1976) The Estimation of Dehydrogenase Activity in Soil. Short Communication. Soil Biology and Biochemistry, 9, 67-70.
https://doi.org/10.1016/0038-0717(77)90063-3
[27]  Mazur-Pączka, A., Pączka, G., Kostecka, J., Garczyńska, M., Podolak, A. and Szura, R. (2019) Community Structure of Lumbricidae in Permanent Grassland and Arable Land. Journal of Ecological Engineering, 20, 1-6.
https://doi.org/10.12911/22998993/102965
[28]  Mucha, V. (1995) Dynamika enzýmovej aktivity v hnedozemných a čiernicových pôdach pod porastom vybraných plodín. II. Peroxidázy a polyfenoloxidázy. Poľnohospodárstvo, 41, 412-420.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133