HPTLC Phytochemical Screening and Hydrophilic Antioxidant Activities of Apium graveolens L., Cleome gynandra L., and Hibiscus sabdariffa L. Used for Diabetes Management
Diabetes mellitus is a socially significant disease characterized by chronic hyperglycemia and metabolic disorders of proteins, carbohydrates, and lipids due to reduced function of insulin. Medicinal plants, rich in bioactive components that promote prevention and treatment, are inexpensive and no side effects. Apium graveolens, Cleome gynandra, and Hibiscus sabdariffa from Burkina Faso were investigated for their phytochemical profile and antioxidant activities. The high-performance thin-layer chromatography profile revealed flavonoids, tannins, and sterols in these herbaceous. The Hibiscus sabdariffa methanolic extract exhibited the highest total phenolic (138.4 ± 0.5 mg GAE/g DW) and flavonoid (52.8 ± 0.6 mg RuE/g DW) contents comparatively to Cleome gynandra and Apium graveolens. Hibiscus sabdariffa methanolic extract also presented the highest antioxidant activity (IC50 = 0.31 ± 0.002 mg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay. A high correlation between flavonoid contents and hydrophilic antioxidant activities (r = 0.99) was observed, indicating that flavonoids contribute significatively to these herbaceous antioxidant properties. Apium graveolens, Cleome gynandra, and Hibiscus sabdariffa constitute a natural source of phenolic compounds that could be exploited in diabetes mellitus management.
References
[1]
Papaioannou, E.H., Stoforos, N.G. and Liakopoulou-Kyriakides, M. (2011) Substrate Contribution on Free Radical Scavenging Capacity of Carotenoid Extracts Produced from Blakeslea trispora Cultures. World Journal of Microbiology and Biotechnology, 27, 851-858. https://doi.org/10.1007/s11274-010-0527-z
[2]
Prior, R.L., Wu, X.L. and Schaich, K. (2005) Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural Food and Chemistry, 53, 4290-4302. https://doi.org/10.1021/jf0502698
[3]
Tibiri, A., Sawadogo, W.R., Ouedraogo, N., Banzouzi, J.T., Guissou, I.P. and Nacoulma, O.G. (2010) Evaluation of Antioxidant Activity, Total Phenolic and Flavonoid Contents of Antada Africana Guill. et Perr. (Mimosaceae) Organ Extracts. Research Journal of Medical Sciences, 4, 81-87. https://doi.org/10.3923/rjmsci.2010.81.87
[4]
Hema, A., Palé, E., Sérémé, A. and Nacro, M. (2016) Comparison of Total Antioxidant Capacity, Polyphenolic and Anthocyanins Contents from Some Varieties of Dry Beans of Burkina. ChemXpress, 9, 1-9.
[5]
Seeram, N.P. (2008) Berry Fruits for Cancer Prevention: Current Status and Future Prospects. Journal of Agricultural Food and Chemistry, 56, 630-635. https://doi.org/10.1021/jf072504n
[6]
Johnsen, S.P., Overvad, K., Stripp, C., et al. (2003) Intake of Fruit and Vegetables and the Risk of Ischemic Stroke in a Cohort of Danish Men and Women. The American Journal of Clinical Nutrition, 78, 57-64. https://doi.org/10.1093/ajcn/78.1.57
[7]
Jasprica, I., Bojic, M., Mornar, A., Besic, E., Bucan, K. and Medic-Saric, M. (2007) Evaluation of Antioxidative Activity of Croatian Propolis Samples Using DPPH• and ABTS•+ Stable Free Radical Assays. Molecules, 12, 1006-1021. https://doi.org/10.3390/12051006
[8]
Noba, A., Koala, M., Hema, A., Bationo, R.K., Dabiré, C.M., Palé, E. and Nacro, M. (2020) Carotenoids Identification by HPTLC-MS and Vitamin C Content of Fruits of Saba senegalensis (A. DC) Pichon. African Journal of Pure and Applied Chemistry, 14, 60-68.
[9]
Begum, S.A.S., Rao, M. and Ramachandra, M.S. (2019) Evaluation of Antidiabetic Activity of Swertia chirayita and Panax ginseng. European Journal of Pharmaceutical and Medical Research, 7, 516-522.
[10]
Ogurtsova, K., da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., et al. (2017) Global Estimates for the Prevalence of Diabetes for 2015 and 2040. IDF Diabetes Atlas, 128, 40-50. https://doi.org/10.1016/j.diabres.2017.03.024
[11]
Bi, X., Lim, J. and Henry, C.J. (2017) Spices in the Management of Diabetes Mellitus. Food Chemistry, 217, 281-293. https://doi.org/10.1016/j.foodchem.2016.08.111
[12]
Muñiz-Ramirez, A., Perez, R.M., Garcia, E. and Garcia, F.E. (2020) Antidiabetic Activity of Aloe vera Leaves. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 6371201. https://doi.org/10.1155/2020/6371201
[13]
Purbowatingrum, Ngadiwiyana, Fachriyah, E., Ismiyarto, Ariestiani, B. and Khikmah (2018) Antidiabetic Activity from Cinnamaldydhe Encapsulated by Nanochitosan. IOP Conference Series: Materials Science and Engineering, 349, 012048. https://doi.org/10.1088/1757-899X/349/1/012048
[14]
Dewi, U.K. and Tyas, R.S. (2009) Efek rebusan daun tapak dara pada dosis dan frekuensi yang berbeda terhadap kerusakan dan akumulasi glikogen pada hepar mencit (Mus musculuc). BIOMA, 11, 1-5.
[15]
Martin, G. (1995) Ethnobotany. A Methods Manuel. Kew, Royaume-Uni, Royal Botanic Gardens. In: Londres, Chapman and Hall. https://fr.scribd.com/document/311438001/Martin-1995-Ethnobotany-A-Methods-Manual-pdf
[16]
Reich, E., Schibli, A., Widmer, V., Jorns, R., Wolfram, E. and DeBatt, A. (2006) HPTLC Methods for Identification of Green Tea and Green Tea Extract. Journal of Liquid Chromatography & Related Technologies, 29, 2141-2151. https://doi.org/10.1080/15512160600760293
[17]
Reich, E., Blatter, A., Jorns, R., Kreuter, M. and Thiekötter, K. (2002) An AOAC Peer-Verified Method for Identification of Echinacea Species by HPTLC. Journal of Planar Chromatography, 15, 244-251. https://doi.org/10.1556/JPC.15.2002.4.1
[18]
Ouédraogo, J.C.W., Koala, M., Ouédraogo, W., Noufou, O., Kini, F., Gerbaux, P. and Bonzi-Coulibaly, Y.L. (2017) Total Phenolics and Total Flavonoid Contents, Antioxidant Activity and Flavonoids Identification by High-Performance Liquid Chromatography-Tandem Mass Spectrometry of Odontonema strictum (Acanthaceae) Leaves. Asian Journal of Plant Science and Research, 7, 54-63.
[19]
Brito, A., Areche, C., Sepúlveda, B., Kennelly, E.J. and Simirgiotis, M.J. (2014) Anthocyanin Characterization, Total Phenolic Quantification and Antioxidant Features of Some Chilean Edible Berry Extracts. Molecules, 19, 10936-10955. https://doi.org/10.3390/molecules190810936
[20]
Etzbach, L., Pfeiffer, A., Weber, F. and Schieber, A. (2018) Characterization of Carotenoid Profiles in Goldenberry (Physalis peruviana L.) Fruits at Various Ripening Stages and in Different Plant Tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245, 508-517. https://doi.org/10.1016/j.foodchem.2017.10.120
[21]
Lizárraga-Velázquez, C.E., Hernández, C., González-Aguilar, G.A. and Heredia, J.B. (2018) Effect of Hydrophilic and Lipophilic Antioxidants from Mango Peel (Mangifera indica L. cv. Ataulfo) on Lipid Peroxidation in Fish Oil. CyTA—Journal of Food, 16, 1095-1101. https://doi.org/10.1080/19476337.2018.1513425
[22]
Zhao, Z.G., Yan, H.F., Zheng, R., Khan, Saeed, M., Fu, X., Tao, Z. and Zhang, Z.Y. (2018) Anthocyanins Characterization and Antioxidant Activities of Sugarcane (Saccharum officinarum L.) Rind Extracts. Industrial Crops & Products, 113, 38-45. https://doi.org/10.1016/j.indcrop.2018.01.015
[23]
Dudonné, S., Vitrac, X., Courtiere, P., Woillez, M. and Mérillon, J.M. (2009) Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57, 1768-1774. https://doi.org/10.1021/jf803011r
[24]
Cotton, C.M. and Wilkie, P. (1996) Ethnobotany: Principles and Applications. John Wiley & Sons, Chichester. https://pubs.acs.org/doi/abs/10.1021/jm9701841
[25]
Brou, K.G., Mamyrbekova-Bekro, J.A., Dogbo, D.O., Gogbeu, S.J. and Bekro, Y.A. (2010) On the Qualitative Phytochemical Composition of Crude Hydromethanolic Extracts of the Leaves of 6 Varieties of Manihot Esculenta Crantz of Côte d’Ivoire. European Journal of Scientific Research, 45, 200-211.
[26]
Wagner, H., Bladt, S. and Zgainski, E. (1996) Plant Drug Analysis: A Thin Layer, Chromatography Atlas. 2nd Edition, Springer Verlag, Berlin Heidelberg, New York, 320 p. https://doi.org/10.1007/978-3-642-00574-9
[27]
Ye, J., Feng, L.L., Xiong, J. and Xiong, Y.D. (2011) Ultrasound-Assisted Extraction of Corn Carotenoids in Ethanol. International Journal of Food Science and Technology, 46, 2131-2136. https://doi.org/10.1111/j.1365-2621.2011.02727.x
[28]
Nitiéma, M., Koala, M., Belemnaba, L., Ouédraogo, J.C.W., Ouédraogo, S., Kini, B.F., Ouédraogo, S. and Guissou, I.P. (2019) Endothelium-Independent Vasorelaxant Effects of Anthocyanins-Enriched Extract from Odontonema strictum (Nees) Kuntze (Acanthaceae) Flowers: Ca2+ Channels Involvement. European Journal of Medicinal Plants, 29, 1-11. https://doi.org/10.9734/ejmp/2019/v29i330155
[29]
Nnenna, A.O., Chidi, U.S., Azuka, A.B., Kelechi, A.K. and Udeh, E.K. (2020) Inhibitory Potential and Antidiabetic Activity of Leaf Extracts of Vitex doniana. African Journal of Biochemistry Research, 14, 72-80. https://doi.org/10.5897/AJBR2020.1098
[30]
Reddy, N.V., Anarthe, S.J. and Raghavendra, N.M. (2010) In Vitro Antioxidant and Antidiabetic Activity of Asystasia gangetica (Chinese Violet) Linn. (Acanthaceae). International Journal of Research in Pharmaceutical and Biomedical Sciences, 1, 72-75.
[31]
Wojdylo, A., Oszmiański, J. and Czemerys, R. (2007) Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chemistry, 105, 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038
[32]
Cano, M.P., Gómez-Maqueo, A., García-Cayuela, T. and Welti-Chanes, J. (2017) Characterization of Carotenoid Profile of Spanish Sanguinos and Verdal Prickly Pear (Opuntia ficus-indica, spp.) Tissues. Food Chemistry, 237, 612-622. https://doi.org/10.1016/j.foodchem.2017.05.135
[33]
Thaipong, K., Boonprakob, U., Cisneros-Zevallos, L. and Byrne, D.H. (2005) Hydrophilic and Lipophilic Antioxidant Activities of Guava Fruits. The Southeast Asian Journal of Tropical Medicine and Public Health, 4, 254-257.
[34]
Bhatia, A., Singh, B., Arora, R. and Arora, S. (2019) In Vitro Evaluation of the α-Glucosidase Inhibitory Potential of Methanolic Extracts of Traditionally Used Antidiabetic Plants. BMC Complementary and Alternative Medicine, 19, Article No. 74. https://doi.org/10.1186/s12906-019-2482-z