Development of a Model for Assessing Vulnerability to Pollution of Groundwater in Fissured Aquifers: The Case of the Ehania Watershed (South-Eastern C?te d’Ivoire)
The protection of aquifers is a major concern for the authorities, especially in areas where there are large agro-industrial exploitations. The objective of this study is to define a new method of aquifer protection based on the characteristics of the structures of aquifers. The intrinsic vulnerability mapping method, PaPRI was used. It is a variant of the PaPRIKa method applied in karstic environment which has been adapted for its application in basement environment. This method uses three factors, including aquifer protection (P), using the soil cover, the unsaturated zone and the thickness of the alteration layer, (R) for the rock type and (I) for infiltration which including slope and drainage density. PAPRI is a method based on the weighting of different factors. The results obtained show 4 classes that evolve from low vulnerability classes (5% of the study area) to high and very high vulnerability classes (58%) and average vulnerability classes (37%). The classes of high and very high vulnerability, which indicate the zones that are very exposed to pollution, are more present in the central-northern part of the study area, with a few appearances towards the south. These zones could be related to topography due to the often very high slopes observed in the area. One of the advantages of this new method lies in the characterization of the alterations that strongly influence the migration of pollutants towards the water tables according to their nature and their thickness.
References
[1]
Thirumalaivasan, D., Karmegam, M. and Venugopal, K. (2003) AHP-Drastic: Software for Specific Aquifer Vulnerability Assessment Using DRASTIC Model and GIS. Environmental Modelling & Software, 18, 645-656. https://doi.org/10.1016/S1364-8152(03)00051-3
[2]
Aksever, F., Karagüzel, R. and Mutlutürk, M. (2015) Evaluation of Groundwater Quality and Contamination in Drinking Water Basin: A Case Study of the Senirkent-Uluborlu Basin (Isparta-Turkey). Environmental Earth Sciences, 73, 1281-1293. https://doi.org/10.1007/s12665-014-3483-3
[3]
Gavrilescu, M. (2009) Emerging Processes for Soil and Groundwater Cleanup: Potential Benefits and Risks. Environmental Engineering and Management Journal, 9, 1293-1307. https://doi.org/10.30638/eemj.2009.190
[4]
Hao, L., Huang, L., Wang, W. and Zhang, H. (2011) Evaluation of the Impact of Planting Structure on Water Resources. Environmental Engineering and Management Journal, 10, 899-903. https://doi.org/10.30638/eemj.2011.126
[5]
Aller, L., Lehr, J.H., Petty, R. and Bennett, T. (1987) DRASTIC—A Standardized System to Evaluate Groundwater Pollution Potential Using Hydrogeologic Setting. Journal of the Geological Society of India, 29, 23-37.
[6]
Foster, S. (1987) Fundamental Concepts in Aquifer Vulnerability, Pollution Risk and Protection Strategy. In: Van Duijvenbooden, W. and Van Waegeningh, H.G., Eds., Vulnerability of Soil and Groundwater to Pollutants, Committee on Hydrological Research, The Hague, 69-86.
[7]
Van Stempvoort, D., Ewert, L. and Wassenaar, L. (1993) Aquifer Vulnerability Index: A GIS-Compatible Method for Groundwater Vulnerability Mapping. Canadian Water Resources Journal, 18, 25-37. https://doi.org/10.4296/cwrj1801025
[8]
Civita, M. (1994) The Maps of Groundwater Vulnerability to Pollution: Theory and Practice. Quaderni di Tecniche di Protezione Ambientale, Pitagora. (In Italian)
[9]
Dibi, B., Kouamé, K.I., Konan-Waidhet, A.B., Savane, I., Biemi, J., Nedeff, V. and Lazar, G. (2012) Impact of Agriculture on the Quality of Groundwater Resources in Peri-Urban Zone of Songon (Côte d’Ivoire). Environmental Engineering and Management Journal, 11, 2173-2182. https://doi.org/10.30638/eemj.2012.271
[10]
Doumouya, I., Dibi, B., Kouamé, K.I., Saley, B., Jourda, J.P., Savane, I. and Biemi, J. (2012) Modelling of Favourable Zones for the Establishment of Water Points by Geographical Information System (GIS) and Multicriteria Analysis (MCA) in the Aboisso Area (South-East of Côte d’Ivoire). Environmental Earth Science, 67, 1763-1780. https://doi.org/10.1007/s12665-012-1622-2
[11]
Kavouri, K., Plagnes, V., Tremoulet, J., Dorfliger, N., Reijiba, F. and Marchet, P. (2011) PaPRIKa: A Method for Estimating Karst Resource and Source Vulnerability—Application to the Ouysse Karst System (Southwest France). Hydrogeology Journal, 19, 339-353. https://doi.org/10.1007/s10040-010-0688-8
[12]
Huneau, F., Jaunat, J., Kavouri, K., Plagnes, V., Rey, F. and Dorfliger, N. (2013) Intrinsic Vulnerability Mapping for Small Mountainous Karst Aquifers, Implementation of the New PaPRIKa Method to Western Pyrenees (France). Engineering Geology, 161, 81-93. https://doi.org/10.1016/j.enggeo.2013.03.028
[13]
Ollivier, C., Lecomte, Y., Chalikakis, K., Mazzilli, N., Danquigny, C. and Emblanch, C. (2018) A QGIS Plugin Based on the PaPRIKa Method forKarst Aquifer Vulnerability Mappingby. Groundwater, 57, 201-204. https://doi.org/10.1111/gwat.12855
[14]
Dibi, B., Plagnes, V., Konan-Waidhet, A.B. and Savané, I. (2015) Définition d’une méthodologie de dimensionnement des zones de protection des ouvrages de captages d’eaux souterraines en zone de socle. Cas de la zone test du bassin versant d’Ehania (Sud-est de la Côte d’Ivoire). Vingtièmes journées techniques du Comité Francais d’Hydrogéologie de l’Association Internationale des Hydrogéologues. Aquifères de socle: Le point sur les concepts et les applications opérationnelles, La Roche-sur-Yon, 16 p.
[15]
Mangoua, M.J., Konan, K.S., Kouamé, K.I., Zougrou, N.N., Kouassi, K.L., Savane, I. and Biemi, J. (2018) Assessment of Vulnerability to Groundwater Pollution in the Department of Tiassalé (South of Côte d’Ivoire). EWASH & TI Journal, 2, 46-54.
[16]
Kamenan, Y.M., Mangoua, O.M.J., Dibi, B., Georges, S.E., Kouassi, K.L. and Kouassi, K.A. (2020) Assessment of Vulnerability to Groundwater Pollution in the Lobo Watershed at Nibéhibé (Central-West, Côte d’Ivoire). Journal of Water Resource and Protection, 12, 657-671. https://doi.org/10.4236/jwarp.2020.128040
[17]
Dabin, B., Leneuf, N. and Riou, G. (1960) Carte pédologique de la Côte d’Ivoire au 1/2.000.000. Notice explicative, ORSTOM, 39.
[18]
Wyns, R., Gourry, J.C., Baltassat, J.M. and Lebert, F. (1999) Caractérisation multiparamètre des horizons de subsurface (0-100 m) en contexte de socle altéré. Colloque GEOFCAN: Géophysique des sols et des formations superficielles. BRGM, INRA, IRD, UPMC, 21-22 septembre, Orléans, France, Actes du 2e colloque, 105-110.
[19]
Dibi, B. (2008) Cartographie des sites potentiels d’implantation des points d’eau dans le département d’Aboisso (Sud-Est de la Côte d’Ivoire): Apport du SIG et de l’analyse multicritère. Thèse unique de Doctorat, Université de Cocody, Abidjan, 164.
[20]
Dorfliger, N. and Plagnes, V. (2010) Cartographie de la vulnérabilité des aquifères karstiques guide méthodologique de la méthode PaPRIKa [Mapping the Vulnerability of Karst Aquifers. Guidelines of the Method PAPRIKa]. Rapport BRGM RP-57527-FR, 100.
[21]
De Dreuzy, J.-R. (2000) Analyse des propriétés hydrauliques des réseaux de fractures. Discussion des modèles d’écoulement compatibles avec les principales propriétés géométriques. Thèse de Doctorat, Univ. Rennes 1, France, 217.
[22]
Darcel, C. (2002) Corrélations dans les réseaux de fractures: Caractérisation et conséquences sur les propriétés hydrauliques. Hydrologie. Université Rennes 1, 223.
[23]
Sinan, M. and Razack, M. (2008) An Extension to the DRASTIC Model for Assessing Groundwater Vulnerability to Pollution: Application to the Haouz Aquifer of Marrakech (Morocco). Environmental Geology, 57, 349-363. https://doi.org/10.1007/s00254-008-1304-2
[24]
Prasad, R.K., Mondal, N.C., Pallavi, B., Nandakumar, M.V. and Singh, V.S. (2008) Deciphering Potential Groundwater Zone in Hard Rock through the Application of GIS. Environmental Geology, 55, 467-475. https://doi.org/10.1007/s00254-007-0992-3
[25]
Saaty, T.L. (1977) A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathematical Psychology, 15, 234-281. https://doi.org/10.1016/0022-2496(77)90033-5
[26]
Eastman, R.J., Kyem, P.A.K. and Toledano, J. (1993) A Procedure for Multiple-Objective Decision Making in GIS under Conditions of Conflicting Objectives. EGIS’93, Genoa, Vol. 1, 438-447.
[27]
OFEFP/OFEG (2003) Délimitation des zones de protection des eaux souterraines en milieu fissuré. Guide Pratique, 83.
[28]
Vernoux, J.-F., Wuilleumier, A. and Dorfliger, N. (2007) Délimitation des bassin versant des captages et de leur vulnérabilité vis a vis des pollutions diffuses. Guide méthodologique, BRGM, 70.
[29]
Durand, L. (2012) Cartographie de la Vulnérabilité du Système Karstique des Eaux Belles (Haute-Savoie) et étude de son Fonctionnement. Master 2 Sciences de l’univers, Environnement, Ecologie. Université Pierre et Marie Curie, école des Mines de Paris & école Nationale du Génie Rural des Eaux et des Forêts, Parcours Hydrologie Hydrogéologie, 45.
[30]
Mangin, A. (1975) Contribution à l’étude hydrodynamique des aquifères karstiques [Contributions to the Hydrodynamics of Karst Aquifers]. Thèse, Université Dijon, France, 124.