|
融合隐性和显性社交信息的连续兴趣点推荐方法研究
|
Abstract:
[1] | Rendle, S., Freudenthaler, C., Schmidtthieme, L., et al. (2010) Factorizing Personalized Markov Chains for Next-Basket Recommendation. The Web Conference, Raleigh, 26-30 April 2010, 811-820.
https://doi.org/10.1145/1772690.1772773 |
[2] | Rendle, S., Freudenthaler, C., Gantner, Z., et al. (2009) BPR: Bayesian Personalized Ranking from Implicit Feedback. Conference on Uncertainty in Artificial Intelligence, Montreal, 18-21 June 2009, 452-461. |
[3] | Yao, D., Zhang, C., Huang, J., et al. (2017) SERM: A Recurrent Model for Next Loca-tion Prediction in Semantic Trajectories. Conference on Information and Knowledge Management, California, 14-19 Oc-tober 2017, 2411-2414.
https://doi.org/10.1145/3132847.3133056 |
[4] | 胡德敏, 杨晨. 一种基于多类型情景信息的兴趣点推荐模型[J]. 计算机应用研究, 2018, 35(6): 1636-1640, 1675. |
[5] | 苏畅, 武鹏飞, 谢显中. 基于用户兴趣和地理因素的兴趣点推荐方法[J]. 计算机科学, 2019, 46(4): 228-234. |
[6] | Zhang, W. and Wang, J. (2015) Location and Time Aware Social Collaborative Retrieval for New Suc-cessive Point-of-Interest Recommendation. Conference on Information and Knowledge Management, Guilin, 20-23, November 2015, 1221-1230. https://doi.org/10.1145/2806416.2806564 |
[7] | Cheng, C., Yang, H., Lyu, M.R., et al. (2013) Where You Like to Go Next: Successive Point-of-Interest Recommendation. International Joint Conference on Artificial Intelligence, Beijing, 3-9 August 2013, 2605-2611. |
[8] | He, J., Li, X., Liao, L., et al. (2016) Inferring a Per-sonalized Next Point-of-Interest Recommendation Model with Latent Behavior Patterns. National Conference on Artifi-cial Intelligence, Phoenix, 12-17 February 2016, 137-143. |
[9] | Liu, S. and Wang, L. (2018) A Self-Adaptive Point-of-Interest Recommendation Algorithm Based on a Multi-Order Markov Model. Future Generation Computer Systems, 89, 506-514. https://doi.org/10.1016/j.future.2018.07.008 |
[10] | Liu, X., Liu, Y. and Li, X. (2016) Explor-ing the Context of Locations for Personalized Location Recommendations. Proceedings of the International Joint Con-ference on Artificial Intelligence, New York, 7-15 July 2016, 1188-1194.. |
[11] | Zhao, S., Zhao, T., Yang, H., et al. (2016) Stellar: Spatial-Temporal Latent Ranking for Successive Point-of-Interest Recommendation. Proceedings of the National Conference on Artificial Intelligence, Phoenix, 12-17 February 2016, 315-321. |
[12] | Liu, Q., Wu, S., Wang, L., et al. (2016) Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts. Thirtieth AAAI Con-ference on Artificial Intelligence, Phoenix, 12-17 February 2016, 194-200. |
[13] | Zhao, P., Zhu, H., Liu, Y., et al. (2018) Where to Go Next: A Spatio-Temporal LSTM Model for Next POI Recommendation. |
[14] | Li, R., Shen, Y., Zhu, Y., et al. (2018) Next Point-of-Interest Recommendation with Temporal and Multi-Level Context Attention. International Con-ference on Data Mining, Singapore, 17-20 November 2018, 1110-1115.
https://doi.org/10.1109/ICDM.2018.00144 |
[15] | Cho, K., Van, B., Bahdanau, D., et al. (2014) On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. Proceedings of SSST-8, Eighth Workshop on Syntax, Se-mantics and Structure in Statistical Translation, Doha, October 2014, 103-111. https://doi.org/10.3115/v1/W14-4012 |
[16] | Liu, Y., Pham, T.N., Cong, G., et al. (2017) An Experimental Evalua-tion of Point-of-Interest Recommendation in Location-Based Social Networks. Proceedings of the VLDB Endowment, 10, 1010-1021.
https://doi.org/10.14778/3115404.3115407 |
[17] | Bao, J., Zheng, Y., Wilkie, D., et al. (2015) Recommendations in Location-Based Social Networks: A Survey. Geoinformatica, 19, 525-565. https://doi.org/10.1007/s10707-014-0220-8 |
[18] | Huang, L., Ma, Y., Liu, Y., et al. (2015) Point-of-Interest Rec-ommendation in Location-Based Social Networks with Personalized Geo-Social Influence. China Communications, 12, 21-31. https://doi.org/10.1109/CC.2015.7385525 |
[19] | Li, H., Ge, Y., Hong, R., et al. (2016) Point-of-Interest Recommendations: Learning Potential Check-Ins from Friends. Knowledge Discovery and Data Mining, San Francisco, 24-27 August 2016, 975-984.
https://doi.org/10.1145/2939672.2939767 |
[20] | Zhang, D., Li, M., Wang, C., et al. (2016) Point of Interest Rec-ommendation with Social and Geographical Influence. International Conference on Big Data, Washington DC, 5-8 De-cember 2016, 1070-1075.
https://doi.org/10.1109/BigData.2016.7840709 |
[21] | 李鑫, 刘贵全, 李琳, 等. LBSN上基于兴趣圈中社会关系挖掘的推荐算法[J]. 计算机研究与发展, 2017, 54(2): 394-404. |
[22] | Gao, R., Li, J., Li, X., et al. (2018) A Personal-ized Point-of-Interest Recommendation Model via Fusion of Geo-Social Information. Neurocomputing, 273, 159-170. https://doi.org/10.1016/j.neucom.2017.08.020 |
[23] | 温彦, 马立健, 曾庆田, 等. 基于地理信息偏好修正和社交关系偏好隐式分析的POI推荐[J]. 数据分析与知识发现, 2019, 3(8): 30-40. |
[24] | Lee, D.D. and Seung, H. (1999) Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature, 401, 788-791. https://doi.org/10.1038/44565 |
[25] | Lecun, Y., Bengio, Y., Hinton, G.E., et al. (2015) Deep Learning. Nature, 521, 436-444.
https://doi.org/10.1038/nature14539 |
[26] | Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735 |
[27] | Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR), Alberta, 14-16 April 2014, 1-14. |
[28] | Huang, L., Ma, Y., Wang, S., et al. (2019) An Attention-Based Spatiotemporal LSTM Network for Next POI Recommendation. IEEE Transactions on Services Computing, 1-11. https://doi.org/10.1109/TSC.2019.2918310 |
[29] | Xie, M., Yin, H., Wang, H., et al. (2016) Learning Graph-Based POI Embedding for Location-Based Recommendation. Conference on Information and Knowledge Management, Indi-anapolis, 24-28 October 2016, 15-24.
https://doi.org/10.1145/2983323.2983711 |
[30] | Li, Y., Luo, Y., Zhang, Z., et al. (2019) Context-Aware Atten-tion-Based Data Augmentation for POI Recommendation. International Conference on Data Engineering, Macao, 8-12 April 2019, 177-184.
https://doi.org/10.1109/ICDEW.2019.00-14 |