全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钠离子通道与相关心脏疾病的研究进展
Research Progress in Voltage-Gated Sodium Channels and Related Cardiac Diseases

DOI: 10.12677/HJBM.2020.104014, PP. 103-109

Keywords: 电压门控钠离子通道,Nav1.5,Nav1.8,心律失常,心脏疾病,心脏毒性
Voltage Gated Sodium Channels
, Nav1.5, Nav1.8, Arrhythmia, Cardiac disease, Cardiac Toxicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

电压门控钠离子通道广泛分布于可兴奋细胞的细胞膜上,参与动作电位的产生及传导,主要负责调控动作电位的初始上升相。钠离子通道是最重要的心脏离子通道之一,分布于窦房结、传导系统、心房肌和心室肌,是一类抗心律失常药物的靶蛋白。心脏钠通道的表达正常与否直接影响到心脏的生理病理功能,其功能获得性和功能缺失性的突变均会导致相关心脏疾病的发生。本文阐述了心脏钠离子通道(Nav1.5和Nav1.8)的结构及功能,以及通道异常表达时相关疾病的研究现状,为药物临床应用前的心脏毒性研究及心血管药物的研究开发和临床应用提供重要的理论依据。

Voltage gated sodium channels (VGSCs) are transmembrane proteins responsible for the initial and rapid phase of the action potential in most electrically excitable cells. VGSCs are the most important cardiac ion channels, which are widely located in highly expressed in all types of cardiac myocytes, including the sinus node, the conduction system, atrial and ventricular myocytes. VGSCs are target proteins of type 1 anti-arrhythmic drugs. The expression of cardiac VGSCs may affect the physiological and pathological functions of cardiac. Gain-of-function mutations and loss-of-function mutations of cardiac VGSCs may cause several cardiac diseases. In this article, we focused on reviewing the structure, function and related diseases of cardiac VGSCs (Nav1.5 and Nav1.8), in hopes of providing a reference for further in-depth research regarding relevant drug cardiotoxicity before clinical applications and cardiovascular drug discovery.

References

[1]  Ekberg, J. and Adams, D.J. (2006) Neuronal Voltage-Gated Sodium Channel Subtypes: Key Roles in Inflammatory and Neuropathic Pain. Int J Biochem Cell Biol., 38, 2005-2010. https://doi.org/10.1016/j.biocel.2006.06.008
[2]  Payandeh, J., Gamal El-Din, T.M., Scheuer, T., et al. (2012) Crystal Structure of a Voltage-Gated Sodium Channel in Two Potentially Inactivated States. Nature, 486, 135-139. https://doi.org/10.1038/nature11077
[3]  Blechschmidt, S., Haufe, V., Benndorf, K., et al. (2008) Voltage-Gated Na+ Channel Transcript Patterns in the Mammalian Heart Are Species-Dependent. Prog Biophys Mol Biol, 98, 309-318. https://doi.org/10.1016/j.pbiomolbio.2009.01.009
[4]  Thakor, D.K., Lin, A., Matsuka, Y., et al. (2009) Increased Peripheral Nerve Excitability and Local NaV1.8 mRNA Up-Regulation in Painful Neuropathy. Mol Pain, 5, 14. https://doi.org/10.1186/1744-8069-5-14
[5]  Coward, K., Plumpton, C., Facer, P., et al. (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 Sodium Channels in Human Pain States. Pain, 85, 41-50. https://doi.org/10.1016/S0304-3959(99)00251-1
[6]  Verkerk, A.O., Remme, C.A., Schumacher, C.A., et al. (2012) Functional Nav1.8 Channels in Intracardiac Neurons: The Link between SCN10A and Cardiac Electrophysiology. Circ Res., 111, 333-343. https://doi.org/10.1161/CIRCRESAHA.112.274035
[7]  Facer, P., Punjabi, P.P., Abrari, A., et al. (2011) Localisation of SCN10A Gene Product Na(v)1.8 and Novel Pain-Related Ion Channels in Human Heart. International Heart Journal, 52, 146-152. https://doi.org/10.1536/ihj.52.146
[8]  van den Boogaard, M., Smemo, S., Burnicka-Turek, O., et al. (2014) A Common Genetic Variant within SCN10A Modulates Cardiac SCN5A Expression. J Clin Invest, 124, 1844-1852. https://doi.org/10.1172/JCI73140
[9]  Yang, T., Atack, T.C., Stroud, D.M., et al. (2012) Blocking Scn10a Channels in Heart Reduces Late Sodium Current and Is Antiarrhythmic. Circ Res., 111, 322-332. https://doi.org/10.1161/CIRCRESAHA.112.265173
[10]  Chambers, J.C., Zhao, J., Terracciano, C.M., et al. (2010) Genetic Variation in SCN10A Influences Cardiac Conduction. Nat Genet., 42, 149-152. https://doi.org/10.1038/ng.516
[11]  Crotti, L., Celano, G., Dagradi, F., et al. (2008) Congenital Long QT Syndrome. Orphanet J Rare Dis., 3, 18. https://doi.org/10.1186/1750-1172-3-18
[12]  Clancy, C.E., Tateyama, M., Liu, H., et al. (2003) Non-Equilibrium Gating in Cardiac Na+ Channels: An Original Mechanism of Arrhythmia. Circulation, 107, 2233-2237. https://doi.org/10.1161/01.CIR.0000069273.51375.BD
[13]  Wang, D.W., Yazawa, K., George Jr., A.L., et al. (1996) Characterization of Human Cardiac Na+ Channel Mutations in the Congenital Long QT Syndrome. Proc Natl Acad Sci USA, 93, 13200-13205. https://doi.org/10.1073/pnas.93.23.13200
[14]  Makita, N., Behr, E., Shimizu, W., et al. (2008) The E1784K Mutation in SCN5A Is Associated with Mixed Clinical Phenotype of Type 3 Long QT Syndrome. J Clin Invest., 118, 2219-2229. https://doi.org/10.1172/JCI34057
[15]  Kanters, J.K., Yuan, L., Hedley, P.L., et al. (2014) Flecainide Provocation Reveals Concealed Brugada Syndrome in a Long QT Syndrome Family with a Novel L1786Q Mutation in SCN5A. Circ J., 78, 1136-1143. https://doi.org/10.1253/circj.CJ-13-1167
[16]  Song, W. and Shou, W. (2012) Cardiac Sodium Channel Nav1.5 Mutations and Cardiac Arrhythmia. Pediatr Cardiol., 33, 943-949. https://doi.org/10.1007/s00246-012-0303-y
[17]  Wilde, A.A., Antzelevitch, C., Borggrefe, M., Brugada, J., Bru-gada, R., Brugada, P., et al. (2002) Proposed Diagnostic Criteria for the Brugada Syndrome: Consensus Report. Circulation, 106, 2514-2519. https://doi.org/10.1161/01.CIR.0000034169.45752.4A
[18]  Wilde, A.A., Postema, P.G., Di Diego, J.M., et al. (2010) The Pathophysiological Mechanism Underlying Brugada Syndrome: Depolarization versus Repolarization. J Mol Cell Cardiol., 49, 543-553. https://doi.org/10.1016/j.yjmcc.2010.07.012
[19]  Moreau, A., Keller, D.I., Huang, H., et al. (2012) Mexiletine Differentially Restores the Trafficking Defects Caused by Two Brugada Syndrome Mutations. Front Pharmacol., 3, 62. https://doi.org/10.3389/fphar.2012.00062
[20]  Ortiz-Bonnin, B., Rinné, S., Moss, R., et al. (2016) Elec-trophysiological Characterization of a Large Set of Novel Variants in the SCN5A-Gene: Identification of Novel LQTS3 and BrS Mutations. Pflugers Arch., 468, 1375-1387. https://doi.org/10.1007/s00424-016-1844-3
[21]  Veltmann, C., Barajas-Martinez, H., Wolpert, C., et al. (2016) Further Insights in the Most Common SCN5A Mutation Causing Overlapping Phenotype of Long QT Syndrome, Brugada Syndrome, and Conduction Defect. J Am Heart Assoc., 5, pii: e003379. https://doi.org/10.1161/JAHA.116.003379
[22]  Samani, K., Wu, G., Ai, T., et al. (2009) A Novel SCN5A Mutation V1340I in Brugada Syndrome Augmenting Arrhythmias during Febrile Illness. Heart Rhythm., 6, 1318-1326. https://doi.org/10.1016/j.hrthm.2009.05.016
[23]  Hu, D., Barajas-Martínez, H., Pfeiffer, R., et al. (2014) Mutations in SCN10A Are Responsible for a Large Fraction of Cases of Brugada Syndrome. J Am Coll Cardiol., 64, 66-79. https://doi.org/10.1016/j.jacc.2014.04.032
[24]  Benson, D.W., Wang, D.W., Dyment, M., et al. (2003) Congenital Sick Sinus Syndrome Caused by Recessive Mutations in the Cardiac Sodium Channel Gene (SCN5A). J Clin Invest., 112, 1019-1028. https://doi.org/10.1172/JCI200318062
[25]  Adán, V. and Crown, L.A. (2003) Diagnosis and Treatment of Sick Sinus Syndrome. Am Fam Physician., 67, 1725-1732.
[26]  Veldkamp, M.W., Wilders, R., Baartscheer, A., et al. (2003) Contribution of Sodium Channel Mutations to Bradycardia and Sinus Node Dysfunction in LQT3 Families. Circ Res., 92, 976-983. https://doi.org/10.1161/01.RES.0000069689.09869.A8
[27]  Gregoratos, G. (2003) Cardiology Patient Pages. Sick Sinus Syndrome. Circulation, 108, e143-144. https://doi.org/10.1161/01.CIR.0000102938.55119.EC
[28]  Kawaguchi, T., Hayashi, H., Miyamoto, A., et al. (2013) Prognostic Implications of Progressive Cardiac Conduction Disease. Circ J., 77, 60-67. https://doi.org/10.1253/circj.CJ-12-0849
[29]  Probst, V., Kyndt, F., Potet, F., et al. (2003) Haploinsufficiency in Combination with Aging Causes SCN5A-Linked Hereditary Lenègre Disease. J Am Coll Cardiol., 41, 643-652. https://doi.org/10.1016/S0735-1097(02)02864-4
[30]  Meregalli, P.G., Tan, H.L., Probst, V., et al. (2009) Type of SCN5A Mutation Determines Clinical Severity and Degree of Conduction Slowing in Loss-of-Function Sodium Channelopathies. Heart Rhythm., 6, 341-348. https://doi.org/10.1016/j.hrthm.2008.11.009
[31]  Sanbe, A. (2013) Dilated Cardiomyopathy: A Disease of the Myocardium. Biol Pharm Bull., 36, 18-22. https://doi.org/10.1248/bpb.b212023
[32]  Olson, T.M., Michels, V.V., Ballew, J.D., et al. (2005) Sodium Channel Mutations and Susceptibility to Heart Failure and Atrial Fibrillation. JAMA, 293, 447-454. https://doi.org/10.1001/jama.293.4.447
[33]  McNair, W.P., Sinagra, G., Taylor, M.R., et al. (2011) SCN5A Mu-tations Associate with Arrhythmic Dilated Cardiomyopathy and Commonly Localize to the Voltage-Sensing Mechanism. J Am Coll Cardiol., 57, 2160-2168. https://doi.org/10.1016/j.jacc.2010.09.084
[34]  Moreau, A., Gosselin-Badaroudine, P., Delemotte, L., et al. (2015) Gating Pore Currents Are Defects in Common with Two Nav1.5 Mutations in Patients with Mixed Arrhythmias and Dilated Cardiomyopathy. J Gen Physiol., 145, 93-106. https://doi.org/10.1085/jgp.201411304
[35]  Gosselin-Badaroudine, P., Keller, D.I., Huang, H., et al. (2012) A Proton Leak Current through the Cardiac Sodium Channel Is Linked to Mixed Arrhythmia and the Dilated Cardiomyopathy Phenotype. PLoS ONE, 7, e38331. https://doi.org/10.1371/journal.pone.0038331

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133