|
激光雷达数据协助下的高光谱图像三维残差网络分类
|
Abstract:
[1] | Lacar, F.M., Lewis, M.M. and Grierson, I.T. (2001) Use of Hyperspectral Reflectance for Discrimination between Grape Varieties. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Vol. 6, 2878-2880. |
[2] | Van Der Meer, F. (2004) Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 5, 55-68. https://doi.org/10.1016/j.jag.2003.09.001 |
[3] | Stuffler, T., F?rster, K., Hofer, S., et al. (2009) Hyperspectral Imag-ing—An Advanced Instrument Concept for the EnMAP Mission (Environmental Mapping and Analysis Programme). Acta Astronautica, 65, 1107-1112.
https://doi.org/10.1016/j.actaastro.2009.03.042 |
[4] | Samat, A., Li, J., Liu, S., et al. (2016) Improved Hyperspectral Image Classification by Active Learning Using Pre-Designed Mixed Pixels. Pattern Recognition, 51, 43-58. https://doi.org/10.1016/j.patcog.2015.08.019 |
[5] | Plaza, A., Martinez, P., Perez, R., et al. (2004) A New Approach to Mixed Pixel Classification of Hyperspectral Imagery Based on Extended Morphological Profiles. Pattern Recognition, 37, 1097-1116.
https://doi.org/10.1016/j.patcog.2004.01.006 |
[6] | Keshava, N. and Mustard, J.F. (2002) Spectral Unmixing. IEEE Signal Processing Magazine, 19, 44-57.
https://doi.org/10.1109/79.974727 |
[7] | Villa, A., Benediktsson, J.A., Chanussot, J., et al. (2011) Hyperspectral Image Classification with Independent Component Discriminant Analysis. IEEE Transactions on Geoscience and Re-mote Sensing, 49, 4865-4876.
https://doi.org/10.1109/TGRS.2011.2153861 |
[8] | Chen, Y., Zhao, X. and Jia, X. (2015) Spectral-Spatial Classifi-cation of Hyperspectral Data Based on Deep Belief Network. IEEE Journal of Selected Topics in Applied Earth Observa-tions and Remote Sensing, 8, 2381-2392.
https://doi.org/10.1109/JSTARS.2015.2388577 |
[9] | Matsuki, T., Yokoya, N. and Iwasaki, A. (2015) Hyperspec-tral Tree Species Classification of Japanese Complex Mixed Forest with the Aid of LiDAR Data. IEEE Journal of Se-lected Topics in Applied Earth Observations and Remote Sensing, 8, 2177-2187. https://doi.org/10.1109/JSTARS.2015.2417859 |
[10] | Friman, O., Tolt, G. and Ahlberg, J. (2011) Illumination and Shadow Compensation of Hyperspectral Images Using a Digital Surface Model and Non-Linear Least Squares Estima-tion. Image and Signal Processing for Remote Sensing XVII, Vol. 8180, 81800Q. https://doi.org/10.1117/12.898084 |
[11] | Debes, C., Merentitis, A., Heremans, R., et al. (2014) Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2405-2418. https://doi.org/10.1109/JSTARS.2014.2305441 |
[12] | Sankey, T., Donager, J., McVay, J., et al. (2017) UAV Lidar and Hyperspectral Fusion for Forest Monitoring in the Southwestern USA. Remote Sensing of Environment, 195, 30-43. https://doi.org/10.1016/j.rse.2017.04.007 |
[13] | Dalponte, M., Bruzzone, L. and Gianelle, D. (2008) Fusion of Hy-perspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas. IEEE Transactions on Geo-science and Remote Sensing, 46, 1416-1427.
https://doi.org/10.1109/TGRS.2008.916480 |
[14] | He, K. and Sun, J. (2015) Convolutional Neural Networks at Constrained Time Cost. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 5353-5360.
https://doi.org/10.1109/CVPR.2015.7299173 |
[15] | He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learn-ing for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Ve-gas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90 |
[16] | Zhao, C., Zhao, G. and Jia, X. (2016) Hyperspectral Image Unmixing Based on Fast Kernel Archetypal Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 331-346.
https://doi.org/10.1109/JSTARS.2016.2606504 |
[17] | Zhao, W. and Du, S. (2016) Spectral-Spatial Feature Extrac-tion for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach. IEEE Transactions on Geoscience and Remote Sensing, 54, 4544-4554.
https://doi.org/10.1109/TGRS.2016.2543748 |
[18] | Li, W., Wu, G., Zhang, F., et al. (2016) Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Transactions on Geoscience and Remote Sensing, 55, 844-853. https://doi.org/10.1109/TGRS.2016.2616355 |
[19] | Chen, Y., Jiang, H., Li, C., et al. (2016) Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 54, 6232-6251.
https://doi.org/10.1109/TGRS.2016.2584107 |
[20] | Zhong, Z., Li, J., Luo, Z., et al. (2017) Spectral-Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Transactions on Geoscience and Remote Sensing, 56, 847-858.
https://doi.org/10.1109/TGRS.2017.2755542 |
[21] | M?rup, M. and Hansen, L.K. (2010) Archetypal Analysis for Machine Learning. 2010 IEEE International Workshop on Machine Learning for Signal Processing, Espoo, 21-24 Sep-tember 2020, 172-177.
https://doi.org/10.1109/MLSP.2010.5589222 |
[22] | McCallum, D. and Avis, D. (1979) A Linear Algorithm for Finding the Convex Hull of a Simple Polygon. Information Processing Letters, 9, 201-206. https://doi.org/10.1016/0020-0190(79)90069-3 |
[23] | Dwyer, R.A. (1988) On the Convex Hull of Random Points in a Polytope. Journal of Applied Probability, 25, 688-699.
https://doi.org/10.2307/3214289 |
[24] | Cutler, A. and Breiman, L. (1994) Archetypal Analysis. Technometrics, 36, 338-347.
https://doi.org/10.1080/00401706.1994.10485840 |
[25] | Gader, P., Zare, A., Close, R., Aitken, J. and Tuell, G. (2013) MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set. University of Florida, Gainesville, Tech. Rep. REP-2013-570. |