|
一种基于深度学习的课堂学生学习状态研究
|
Abstract:
[1] | 唐康, 先强, 李明勇. 基于人脸检测的大学课堂关注度研究[J]. 重庆师范大学学报(自然科学版), 2019, 36(5): 123. |
[2] | 郭秀兰, 赵佳敏. 本科课堂教学“出勤率、抬头率、满意率”的调查报告[J]. 改革与开放, 2016(19): 108-110. |
[3] | 左国才, 吴小平, 苏秀芝, 等. 基于CNN人脸识别模型的大学生课堂行为分析研究[J]. 智能计算机与应用, 2019, 9(6): 107-110. |
[4] | 屈梁浩. 基于深度学习的学生课堂疲劳状态的分析与研究[D]: [硕士学位论文]. 重庆: 重庆师范大学, 2019. |
[5] | Krizhevsky, A., Sutskever, I. and Hinton, G. (2012) ImageNet Classification with Deep Convolutional Neural Networks. 2012 NIPS, Lake Tahoe, NV, December 2012, 1097-1105. |
[6] | Szegedy, C., Liu, W., Jia, Y., et al. (2014) Going Deeper with Convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 June 2015, 1-9. https://doi.org/10.1109/CVPR.2015.7298594 |
[7] | He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision & Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778. https://doi.org/10.1109/CVPR.2016.90 |
[8] | Girshick, R. (2015) Fast R-CNN. IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1440-1448. https://doi.org/10.1109/ICCV.2015.169 |
[9] | Xie, S., Girshick, R., Dollár, P., et al. (2017) Aggregated Residual Transformations for Deep Neural Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 5987-5995.
https://doi.org/10.1109/CVPR.2017.634 |
[10] | Liu, W., Anguelov, D., Erhan, D., et al. (2016) SSD: Single Shot MultiBox Detector. European Conference on Computer Vision, Amsterdam, 8-16 October 2016, 21-37. https://doi.org/10.1007/978-3-319-46448-0_2 |
[11] | Redmon, J., Divvala, S., Girshick, R., et al. (2016) You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision & Pattern Recognition, Las Vegas, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91 |
[12] | Redmon, J. and Farhadi, A. (2017) YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 6517-6525. https://doi.org/10.1109/CVPR.2017.690 |
[13] | Redmon, J. and Farhadi, A. (2018) YOLOv3: An In-cremental Improvement. |
[14] | Yang, Z., Xu, W., Wang, Z., et al. (2019) Combining Yolov3-Tiny Model with Dropblock for Tiny-Face Detection. 2019 IEEE 19th International Conference on Communication Technology (ICCT) IEEE, Xi’an, 16-19 October 2019, 1673-1677. https://doi.org/10.1109/ICCT46805.2019.8947158 |
[15] | Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15, 1929-1958. |
[16] | Ghiasi, G., Lin, T.-Y. and Le, Q.V. (2018) DropBlock: A Regularization Method for Convolutional Networks. |