|
氧化碲粉催化还原制备精碲实验研究
|
Abstract:
本文以铜阳极泥氧化酸浸工艺产生的氧化碲粉为原料,通过盐酸浸出–催化还原–洗涤除杂–铸锭制备精碲。实验结果表明,最佳浸出条件即温度为60℃、浸出时间60 min、液固比3:1和盐酸浓度9.4 mol/L时,碲的浸出率为97.6%。催化还原时间为4 h时,碲的还原率为99.9%,该条件下碲的直收率达到97.5%,高于电解法27%~37%。洗涤实验表明还原碲粉中钠,铁和硅等杂质吸附在碲的表面,可通过去离子水和氨水洗涤脱除。还原碲粉经过铸锭后达到牌号Te9999标准。该技术表明工艺简单,碲的直收率高,宜于大规模生产。
In this paper, the tellurium oxide powder produced by the oxidation and acid leaching process of copper anode slime is used as raw material to prepare refined tellurium (Te9999) via a series of processes that hydrochloric acid leaching, catalytic reduction, washing and ingot casting, and industrial research. The experimental results show that the leaching rate of tellurium is 97.6% when the optimal leaching conditions are temperature of 60?C, leaching time of 60 min, liquid-to-solid ratio of 3:1 and hydrochloric acid concentration of 9.4 mol/L. Reduction rate of tellurium is 99.9% when the catalytic reduction time is 4 h. When the catalytic reduction time is 4 h, the reduction rate of tellurium is 99.9%, and the direct recovery rate of tellurium under this condition is 97.5%, which is 27% - 37% higher than the electrolysis method. Washing experiments show that impurities such as sodium, iron and silicon in the reduced tellurium powder are adsorbed on the surface of the tellurium and can be removed by washing with deionized water and ammonia water. The reduced tel-lurium powder reaches the Te9999 standard after ingot casting. This technology shows that the process is simple and the direct yield of tellurium is high, which is suitable for large-scale production.
[1] | Halpert, G. and Sredni, B. (2014) The Influence of the Novel Tellurium Compound AS101 on Autoimmune Diseases. Autoimmunity Reviews, 13, 1230-1235. https://doi.org/10.1016/j.autrev.2014.08.003 |
[2] | Manjare, S.T., Kim, Y. and Churchill, D.G. (2014) Selenium- and Tellurium-Containing Fluorescent Molecular Probes for the Detection of Bio-logically Important Analytes. Accounts of Chemical Research, 47, 2985-2998.
https://doi.org/10.1021/ar500187v |
[3] | 姜含璐, 代涛. 中国未来碲供需形势分析与对策建议[J]. 中国矿业, 2016, 25(10): 7-10. |
[4] | Kavlak, G. and Graedel, T.E. (2013) Global Anthropogenic Selenium Cycles for 1940-2010. Resources Conservation & Recycling, 73, 17-22. https://doi.org/10.1016/j.resconrec.2013.01.013 |
[5] | Buhbut, S., Itzhakov, S., Oron, D., et al. (2015) Quantum Dot Antennas for Photoelectrochemical Solar Cells. Journal of Physical Chemistry Letters, 2, 1917-1924. https://doi.org/10.1021/jz200518q |
[6] | Zhong, J., Wang, G., Fan, J., et al. (2017) Optimization of Process on Electrodeposition of 4N Tellurium from Alkaline Leaching Solutions. Hydrometallurgy, 176, 17-25. https://doi.org/10.1016/j.hydromet.2017.11.011 |
[7] | Li, H.-G. (1990) Rare Metal Metallurgy. Metallurgical Industry Press, Beijing, 10-12. |
[8] | 郑雅杰, 陈昆昆, 孙召明. SO2还原沉金后液回收硒碲及捕集铂钯[J]. 中国有色金属学报, 2011, 21(9): 2258-2264. |
[9] | 张林宝, 郑雅杰, 安小凯. 沉铂钯后液中碲铋的分离与回收工艺[J]. 中国有色金属学报, 2018, 28(8): 176-184. |
[10] | Zhang, H. and Swihart, M.T. (2007) Synthesis of Tellurium Dioxide Nanoparticles by Spray Pyrolysis. Chemistry of Materials, 19, 1290-1301. https://doi.org/10.1021/cm062257n |
[11] | Guo, X., et al. (2017) Recovery of Tellurium from High Telluri-um-Bearing Materials by Alkaline Sul?de Leaching Followed by Sodium Sul?te Precipitation. Hydrometallurgy, 171, 355-361.
https://doi.org/10.1016/j.hydromet.2017.06.010 |
[12] | Feng, H., Wu, C., Zhang, P., Mi, J. and Dong, M. (2015) Facile Hydrothermal Synthesis and Formation Mechanisms of Bi2Te3, Sb2Te3 and Bi2Te3-Sb2Te3 Nanowires. RSC Ad-vances, 5, 100309-100315.
https://doi.org/10.1039/C5RA20014H |
[13] | Ma, Y.T., Gong, Z.Q., Chen, W.M., et al. (2006) Preparation of Pow-dered-Tellurium by Reduction from Sulfuric Acid Solution. Chinese Journal of Nonferrous Metals, 16, 189-194. |
[14] | Mohamad, R., Khalad, Z., Abdallah, Z., Yasser, M. and Makram, H.A. (2006) Study of Segregation Process of Impurities in Molten Tellurium after One Pass of Three Conjoint Zones in Zone Refining. Journal of Crystal Growth, 289, 260-268. https://doi.org/10.1016/j.jcrysgro.2005.11.002 |
[15] | Prasad, D.S., Munirathnam, N.R., Rao, J.V. and Prakash, T.L. (2006) Influence of Multi-Pass, Zone Length and Translation Rate on Impurity Segregation during Zone Refining of Tellurium. Materials Letters, 60, 1875-1879.
https://doi.org/10.1016/j.matlet.2005.12.041 |
[16] | Kovalevsky, S.V. and Shelpakova, I.R. (2000) High-Purity Zinc, Cadmium, Tellurium, Indium and Gallium: Preparation and Analysis. Chemistry for Sustainable Development, 8, 85-87. |
[17] | 郑雅杰, 陈昆昆. 从溶液中回收稀贵金属的一种方法[P]. 中国, CN2010102666790. 2010. |
[18] | Zheng, Y.-J., Sun, Z.-M., Wang, B., Teng, H. and Hong, B. (2008) The Pretreatment of Copper Refinery Slime and the Method of Recovery Rare Elements. CN, 200810032022.0. |
[19] | Sun, Z.M. and Zheng, Y.J. (2011) Preparation of High Pure Tellurium from Raw Tellurium Containing Cu and Se by Chemical Method. Transactions of Nonferrous Metals Society of China, 21, 665-672.
https://doi.org/10.1016/S1003-6326(11)60763-2 |
[20] | 马亚赟, 郑雅杰, 丁光月, 王俊文, 董俊斐, 张福元. 卤素离子催化作用下SO2还原沉金后液及其热力学特征[J]. 中国有色金属学报, 2016, 26(4): 901-907. |
[21] | Dong, H.J., et al. (2014) Study of Crude Tellurium Reduction Precipitation by Sulfur Dioxide. Nonferrous Metals (Extractive Metallurgy), No. 9, 55-58. |
[22] | Liu, Y., Zheng, Y.-J. and Sun, Z.-M. (2014) Preparation of High-Purity Tellurium Powder by Hydrometallurgical Method. Rare Metals, 33, 479-484. https://doi.org/10.1007/s12598-014-0338-8 |
[23] | Séby, F., Potin-gautier, M., Giffaut, E., Boreg, G. and Donard, O.F.X. (2001) A Critical Review of Thermodynamic Data for Selenium Species at 25 ?C. Chemical Geology, 171, 173-194. https://doi.org/10.1016/S0009-2541(00)00246-1 |
[24] | 彭映林, 马亚赟, 张福元, 郑雅杰. 双氧水氧化碱浸分离铂钯精矿中硒碲热力学及实验研究[J]. 中国有色金属学报, 2017, 27(2): 430-438. |