全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

掺磷多晶硅的干法刻蚀工艺研究
Research on Dry Etching Process of Phosphorus-Doped Polysilicon

DOI: 10.12677/APP.2020.1012066, PP. 509-518

Keywords: 半导体制造,多晶硅,掺杂,干法刻蚀
Semiconductor
, Polysilicon, Doping, Dry Etching

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究功率器件中多晶硅栅的干法刻蚀工艺。首先阐述了多晶硅在金属–氧化物–半导体场效应晶体管(MOSFET)中的重要作用,提出当前多晶硅常采用干法刻蚀工艺实现其微观形貌,同时介绍了干法刻蚀的基本原理。然后重点研究了掺杂对多晶硅刻蚀后形貌的影响,通过对表面异常的表征与分析,探究优化的工艺路线,提出掺杂后的多晶硅必须经过表面湿法处理才可以进入光刻、刻蚀工步。最后将以上优化后的多晶硅刻蚀方案应用于一款6500 V/20 A SiC MOSFET的工艺流程,实测电学性能表现优异。
This article mainly studies the etching process of gate polysiliconin power devices. First, the important role of polysilicon in metal-oxide-semiconductor field effect transistors (MOSFET) is explained. It is proposed that the current polysilicon often adopts dry etching process to achieve its microscopic appearance, and the basic principle of dry etching is introduced. Then it focuses on the influence of doping on the morphology of polysilicon after etching. Through the characterization and analysis of surface anomalies, the optimized process route is explored, and it is proposed that the doped polysilicon must undergo surface wet treatment before it can enter photolithography and etching. Finally, the above optimized polysilicon etching scheme is applied to the process flow of a 6500 V/20 A SiC MOSFET, and it exhibits excellent electrical properties.

References

[1]  王守国, 张岩. SiC材料及器件的应用发展前景[J]. 自然杂志, 2011, 33(1): 42-53.
[2]  Matocha, K., Chow, T.P. and Gutmann, R.J. (2005) High-Voltage Normally Off GaN MOSFETs on Sapphire Substrates. IEEE Transactions on Electron Devices, 52, 6-10.
https://doi.org/10.1109/TED.2004.841355
[3]  Noborio, M., Suda, J. and Kimoto, T. (2008) 4H-SiC Double RESURF MOSFETs with a Record Performance by Increasing RESURF Dose. 20th Interna-tional Symposium on Power Semiconductor Devices and IC’s, Vol. 18, 263-266.
https://doi.org/10.1109/ISPSD.2008.4538949
[4]  CREE公司SiC产品报告[Z/OL]. https://www.wolfspeed.com/power/products/sic-bare-die-mosfets
[5]  Ozpineci, B. and Tolbert, L.M. (2003) Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications. Oak Ridge National Laboratory, Tennessee, 6-22.
https://doi.org/10.2172/885849
[6]  Colinge, J.P. and Colige, C.A. (2006) Physics of Semicon-ductor Devices. Springer, New York, 51-68.
[7]  曾莹, 严利人, 王纪民, 等. 微电子制造科学原理与工程技术[M]. 北京: 电子工业出版社, 2003.
[8]  刘玉岭, 檀柏梅, 张楷亮. 微电子技术工程[M]. 北京: 电子工业出版社, 2004.
[9]  陈乐乐, 朱亮, 包大勇, 等. 蚀刻腔条件对刻蚀工艺的影响研究[J]. 半导体技术, 2008, 33(12): 1088-1090.
[10]  陈永生, 汪建华. 氩气对多晶硅刻蚀的影响[J]. 表面技术, 2003, 32(2): 19-21.
[11]  Ullal, S.J., Godfrey, A.R., Ede lberg, E., et al. (2002) Effect of Chamber Wall Conditions on Cl and Cl2 Concentrations in an Inductively Coupled Plasma Reactor. Journal of Vacuum Science & Technology A, 20, 43-52.
https://doi.org/10.1116/1.1421602
[12]  Oehrlein, G.S., Matsuo, P.J., Doemling, M.F., et al. (1996) Study of Plas-ma-Surface Interactions: Chemical Dry Etching and High-Density Plasma Etching. Plasma Sources Science and Tech-nology, 5, 193-199.
https://doi.org/10.1088/0963-0252/5/2/012
[13]  Cunge, G., Ko gelschatz, M., Joubertl, O., et al. (2005) Plasma Wall Interactions during Silicon Etching Process in High-Density HBr/Cl2/O2 Plasmas. Plasma Sources Science and Technology, 14, 42-52.
https://doi.org/10.1088/0963-0252/14/2/S06
[14]  Mastro, M.A. (2019) Power MOSFETs and Diodes. In: Pearton, S., Ren, F. and Mastro, M., Eds., Gallium Oxide: Technology, Devices and Applications, Elsevier, Amsterdam, 401-418.
https://doi.org/10.1016/B978-0-12-814521-0.00017-8
[15]  Ceccarelli, L., Bahman, A.S. and Iannuzzo, F. (2019) Impact of Device Aging in the Compact Electro-Thermal Modeling of SiC Power MOSFETs. Microelectronics Reliabil-ity, 100-101, Article ID: 113336.
https://doi.org/10.1016/j.microrel.2019.06.028
[16]  Xue, X., Zhou, K., Cai, J., Wang, Q. and Wang, Z. (2018) Re-active Ion Etching of Poly(cyclohexene carbonate) in Oxygen Plasma. Microelectronic Engineering, 191, 1-9.
https://doi.org/10.1016/j.mee.2018.01.017
[17]  Younga, D.L., Chenb, K., Theingia, S. and La Salviaa, V. (2020) Reactive Ion Etched, Self-Aligned, Selective Area Poly-Si/SiO2 Passivated Contacts. Solar Energy Materials and Solar Cells, 217, Article ID: 110621.
https://doi.org/10.1016/j.solmat.2020.110621
[18]  Mikhaylov, A.I., Afanasyev, A.V., Ilyin, V.A., Luchinin, V.V., Reshanov, S.A. and Sch?ner, A. (2020) High-Power 4H-SiC MOSFET with an Epitaxial Buried Channel. Semiconduc-tors, 54, 122-126.
https://doi.org/10.1134/S1063782620010157

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133