|
基于多尺度融合的卷积神经网络的杂草幼苗识别
|
Abstract:
[1] | Camargo, A. and Smith, J.S. (2009) Image Pattern Classification for the Identification of Disease Causing Agents in Plants. Computers and Electronics in Agriculture, 66, 121-125.
https://doi.org/10.1016/j.compag.2009.01.003 |
[2] | Sadgrove, E.J., Falzon, G., Miron, D. and Lamb, D. (2017) Fast Object Detection in Pastoral Landscapes Using a Colour Feature Extreme Learning Machine. Computers and Elec-tronics in Agriculture, 139, 204-212.
https://doi.org/10.1016/j.compag.2017.05.017 |
[3] | Haug, S., Michaels, A., Biber, P. and Ostermann, J. (2014) Plant Classification System for Crop/Weed Discrimination without Segmentation. IEEE Winter Conference on Applica-tions of Computer Vision, Steamboat Springs, 24-26 March 2014, 1142-1149. https://doi.org/10.1109/WACV.2014.6835733 |
[4] | Dos Santos Ferreira, A., Matte Freitas, D., Gon?alves da Silva, G., Pistori, H. and Theophilo Folhes, M. (2017) Weed Detection in Soybean Crops Using ConvNets. Computers and Electronics in Agriculture, 143, 314-324.
https://doi.org/10.1016/j.compag.2017.10.027 |
[5] | Mccool, C., Perez, T. and Upcroft, B. (2017) Mixtures of Lightweight Deep Convolutional Neural Networks: Applied to Agricultural Robotics. IEEE Robotics and Automation Letters, 2, 1344-1351.
https://doi.org/10.1109/LRA.2017.2667039 |
[6] | Sa, I., Popovi?, M., Khanna, R., Chen, Z.T., Lottes, P., Liebisch, F., Nieto, J., Stachniss, C., Walter, A. and Siegwart, R. (2018) WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming. Remote Sensing, 10, 1423. https://doi.org/10.3390/rs10091423 |
[7] | 王一鸣, 毛文华, 张小超. 基于纹理和位置特征的麦田杂草识别方法[J]. 农业机械学报, 2007, 38(4): 107-110.
http://dx.chinadoi.cn/10.3969/j.issn.1000-1298.2007.04.028 |
[8] | 何东健, 乔永亮, 李攀, 高瞻, 李海洋, 唐晶磊. 基于SVM-DS多特征融合的杂草识别[J]. 农业机械学报, 2013, 44(2): 182-187. http://dx.chinadoi.cn/10.6041/j.issn.1000-1298.2013.02.034 |
[9] | 张新明, 涂强, 冯梦清. 基于改进概率神经网络的玉米与杂草识别[J]. 山西大学学报(自然科学版), 2015, 38(3): 432-438. http://dx.chinadoi.cn/10.13451/j.cnki.shanxi.univ(nat.sci.).2015.03.008 |
[10] | 翟志强, 朱忠祥, 杜岳峰, 张硕, 毛恩荣. 基于Census变换的双目视觉作物行识别方法[J]. 农业工程学报, 2016, 32(11): 205-213. http://dx.chinadoi.cn/10.11975/j.issn.1002-6819.2016.11.029 |
[11] | 王璨, 武新慧, 李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报, 2018, 34(5): 144-151. http://dx.chinadoi.cn/10.11975/j.issn.1002-6819.2018.05.019 |
[12] | Leminen Madsen, S., Mathiassen, S.K., Dyrmann, M., Laursen, M.S., Paz, L.-C. and J?rgensen, R.N. (2020) Open Plant Pheno-Type Database of Common Weeds in Denmark. Remote Sensing, 12, 1246.
https://doi.org/10.3390/rs12081246 |
[13] | Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) ImageNet Classi-fication with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90. https://doi.org/10.1145/3065386 |
[14] | Szegedy, C., Liu, W., Jia, Y.Q., Sermanet, P., Reed, S., Anguelov, D., et al. (2015) Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-nition, Boston, 7-12 June 2015, 1-9.
https://doi.org/10.1109/CVPR.2015.7298594 |
[15] | Howard, A.G., Zhu, M.L., Chen, B., Kalenichenko, D., Wang, W.J., Weyand, T., Andreetto, M. and Adam, H. (2017) Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv Preprint, arXiv:1704.04861. |
[16] | Hu, J., Shen, L. and Sun, G. (2018) Squeeze-and-Excitation Networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 7132-7141.
https://doi.org/10.1109/CVPR.2018.00745 |
[17] | 孙俊, 何小飞, 谭文军, 武小红, 沈继锋, 陆虎. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165. http://dx.chinadoi.cn/10.11975/j.issn.1002-6819.2018.11.020 |
[18] | 孙俊, 谭文军, 武小红, 沈继锋, 芦兵, 戴春霞. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报, 2019, 35(12): 184-190. http://dx.chinadoi.cn/10.11975/j.issn.1002-6819.2019.12.022 |