全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于DLR模型的PM10–能见度–湿度相关性研究
Correlation Study of PM10-Visibility-Humidity Based on DLR Model

DOI: 10.12677/CSA.2020.1012253, PP. 2388-2396

Keywords: 逻辑回归,云计算,机器学习,PM10,能见度,湿度
Logistic Regression
, Cloud Computing, Machine Learning, PM10, Visibility, Humidity

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对当前大数据在单机运算时间过长,对硬件设备要求高的问题,为此提出基于云环境下使用分布式逻辑回归算法DLR (Distributed Logistic Regression)模型对PM10与能见度以及湿度之间的相关性问题,根据二分类思想,将能见度、湿度作为特征值,PM10作为标签值使用逻辑回归算法构建模型对其进行分析,实验结果表明,在同一湿度范围下能见度值越小,大气气溶胶PM10浓度偏大,在同一能见度范围下湿度值越大,大气气溶胶PM10浓度偏低。并且DLR算法模型在时间性能方面要优于传统回归模型,具有更好的鲁棒性以及实时性。
Considering the problem that the current big data has a long stand-alone operation time and high requirements for hardware devices, this paper proposes the use of the Logistic Regression (DLR) model in the cloud environment for the correlation between PM10 and visibility and humidity. According to the idea of two classifications, visibility and humidity are used as feature values, and PM10 is used as a tag value to construct a model using a logistic regression algorithm. The experimental results show that under the same humidity range, the smaller the visibility value is, the higher the PM10 concentration of atmospheric aerosol is. The higher the humidity value in the same visibility range, the lower the concentration of PM10 in atmospheric aerosols. And the DLR algorithm model outperforms the traditional regression model in terms of temporal performance, and has better robustness and real-time performance.

References

[1]  吴建峰, 张凤太, 卢海芬, 等. 基于标准化降水指数的贵州省近54a干旱时空特征分析[J]. 科学技术与工程, 2018, 18(15): 207-214.
[2]  刘艳萍, 王明仕, 曹景丽, 等. 中国工业基地城市群PM2.5时空分布特征及相关性分析[J]. 科学技术与工程, 2018, 18(15): 184-189.
[3]  Cheung, H.-C., Wang, T., Baumann, K., et al. (2005) Influence of Regional Pollution Outflow on the Concentrations of Fine Particulate Matter and Visibility in the Coastal Area of Southern China. Atmospheric Environment, 39, 6463-6474.
https://doi.org/10.1016/j.atmosenv.2005.07.033
[4]  石灵芝, 邓启红, 路婵等. 基于BP人工神经网络的大气颗粒物PM10质量浓度预测[J]. 中南大学学报, 2012(5): 1969-1974.
[5]  Papanastasiou, D.K., Melas, D. and Kioutsioukis, I. (2007) Development and Assessment of Neural Network and Multiple Regression Models in Order to Predict PM10 Levels in a Medium-sized Mediterranean City. Water, Air, and Soil Pollution, 182, 325-334.
https://doi.org/10.1007/s11270-007-9341-0
[6]  郑湃, 崔立真, 王海洋, 等. 云计算环境下面向数据密集型应用的数据布局策略与方法[J]. 计算机学报, 2010, 33(8): 1472-1480.
[7]  王晓燕, 陈晋川, 杜小勇. 云计算环境中面向OLTP应用的数据分布研究[J]. 计算机学报, 2016, 39(2): 253-269.
[8]  张石磊, 武装. 一种基于Hadoop云计算平台的聚类算法优化的研究[J]. 计算机科学, 2012, 39(10): 115-118.
[9]  潘吴斌. 基于云计算的并行K-means气象数据挖掘研究与应用[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2013.
[10]  王昊. 基于改进贝叶斯网络的气象数据预测算法研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2016.
[11]  强宝华, 唐波, 王玉峰, 等. 基于线性回归和属性集成的分类算法[J]. 计算机科学, 2017, 44(6): 212-215.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133