|
基于改进BERT的知识图谱问答研究
|
Abstract:
[1] | Park, S., Kwon, S., Kim, B., et al. (2015) Question Answering System using Multiple Information Source and Open Type Answer Merge. Proceedings of the 2015 Conference of the North American Chapter of the Association for Com-putational Linguistics: Demonstrations, Denver, June 2015, 111-115. https://doi.org/10.3115/v1/N15-3023 |
[2] | Hristovski, D., Dinevski, D., Kastrin, A. and Rindflesch, T.C. (2015) Biomedical Question Answering Using Semantic Relations. BMC Bioinformatics, 16, Article No. 6. https://doi.org/10.1186/s12859-014-0365-3 |
[3] | Zhao, S., Zheng, Y., Zhu, C., et al. (2016) Semantic Computation in Geography Question Answering. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, 13-15 August 2016, 1572-1576. https://doi.org/10.1109/FSKD.2016.7603410 |
[4] | Liang, P., Jordan, M.I. and Klein, D. (2013) Lambda Depend-ency-Based Compositional Semantics. Computational Linguistics, 39, 389-446. https://doi.org/10.1162/COLI_a_00127 |
[5] | Yao, X. and Van Durme, B. (2014) Information Extraction over Structured Data: Question Answering with Freebase. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, June 2014, 956-966. https://doi.org/10.3115/v1/P14-1090 |
[6] | Dong, L., Wei, F., Zhou, M. and Xu, K. (2015) Question Answering over Freebase with Multi-Column Convolutional Neural Networks. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics & the 7th Interna-tional Joint Conference on Natural Language Processing, Beijing, July 2015, 260-269.
https://doi.org/10.3115/v1/P15-1026 |
[7] | Liu, L. and Wang, D.B. (2018) A Review on Named Entity Recognition. Journal of the China Society for Scientific and Technical Information, 37, 329-340. |
[8] | Lample, G., Ballesteros, M., Subramanian, S., et al. (2016) Neural Architectures for Named Entity Recognition. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, June 2016, 260-270. https://doi.org/10.18653/v1/N16-1030 |
[9] | Strubell, E., Verga, P., Belanger, D., et al. (2017) Fast and Accurate Entity Recognition with Iterated Dilated Convolutions. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, September 2017, 2670-2680. https://doi.org/10.18653/v1/D17-1283 |
[10] | Ma, X. and Hovy, E. (2016) End-to-End Sequence Labeling via Bi-directional LSTM-CNNs-CRF. Proceedings of the 54th Annual Meeting of the Association for Computational Lin-guistics (Volume 1: Long Papers), Berlin, August 2016, 1064-1074. https://doi.org/10.18653/v1/P16-1101 |
[11] | Peters, M.E., Neumann, M., Iyyer, M., et al. (2018) Deep Contextual-ized Word Representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, June 2018, 2227-2237. https://doi.org/10.18653/v1/N18-1202 |
[12] | Devlin, J., Chang, M.W., Lee, K., et al. (2018) BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. |
[13] | Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) Attention Is All You Need. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, 5998-6008. |
[14] | Jawahar, G., Sagot, B. and Seddah, D. (2019) What Does BERT Learn about the Struc-ture of Language? Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, July 2019, 3651-3657.
https://doi.org/10.18653/v1/P19-1356 |
[15] | Loshchilov, I. and Hutter, F. (2019) Decoupled Weight Decay Regular-ization. International Conference on Learning Representations, 1-8. |
[16] | 王玥, 张日崇. 基于动态规划的知识库问答方法[J]. 郑州大学学报(理学版), 2019, 51(4): 37-42. |
[17] | 周博通, 孙承杰, 林磊, 刘秉权. 基于LSTM的大规模知识库自动问答[J]. 北京大学学报(自然科学版), 2018, 54(2): 286-292. |
[18] | Lai, Y., Jia, Y., Lin, Y., Feng, Y. and Zhao, D. (2018) A Chinese Question Answering System for Single-Relation Factoid Questions. In: Huang, X., Jiang, J., Zhao, D., Feng, Y. and Hong, Y., Eds., Natural Language Processing and Chinese Computing. Lecture Notes in Com-puter Science, Vol. 10619, Springer, Cham, 124-135.
https://doi.org/10.1007/978-3-319-73618-1_11 |
[19] | 张芳容, 杨青. 知识库问答系统中实体关系抽取方法研究[J]. 计算机工程与应用, 2020, 56(11): 219-224. |
[20] | 吴天波, 刘露平, 罗晓东, 卿粼波, 何小海. 基于弱依赖信息的知识库问答[J]. 计算机工程, 2020, 1-8.
https://doi.org/10.19678/j.issn.1000-3428.0058312 |