全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进蝙蝠算法的车联网路侧单元部署优化研究
Research on Optimization Method of Roadside Unit Deployment in Internet of Vehicles Based on Improved Bat Algorithm

DOI: 10.12677/CSA.2020.1012249, PP. 2354-2360

Keywords: 车联网,路侧单元,部署问题,蝙蝠算法
Internet of Vehicles
, Road-Side Unit, Deployment Problem, Bat Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

路侧单元(Road-Side Unit, RSU)作为连接车辆和外部网络的桥梁,是车联网通信中的核心部分之一,设计合理的RSU部署方案对于充分发挥其单元效益在车联网中十分重要。本文首先通过将自适应t分布引入到蝙蝠算法中,并在算法迭代过程中加入了灾变机制,从而提出一种改进的蝙蝠算法,能够快速收敛到最优解;随后将改进蝙蝠算法应用到路侧单元的部署中,仿真结果表明该方法能够快速收敛到最优部署效益,具有较好的性能。
Road-side unit (RSU) is one of the core parts of communication mode in internet of vehicles. As the bridge connecting vehicles and external networks, it is very important to design a reasonable RSU deployment scheme to give full play to its unit efficiency in the internet of vehicles. In this paper, an improved bat algorithm based on self-adaptive t-distribution and catastrophe mechanism was proposed. In the proposed algorithm, self-adaptive t-distribution adopted to improve convergence speed and catastrophe mechanism in the algorithm iteration process introduced to increase bat population diversity. Then, the improved bat algorithm is applied to the deployment of roadside units. The simulation results show that the proposed method can quickly converge to the optimal deployment benefit and has good performance.

References

[1]  Trullolsa, O., Fioreb, M., Casettic, C., et al. (2010) Planning Roadside Infrastructure for Information Dissemination in Intelligent Transportation Systems. Computer Communications, 33, 432-442.
https://doi.org/10.1016/j.comcom.2009.11.021
[2]  刘冰艺, 吴黎兵, 贾东耀, 等. 基于移动云服务的车联网数据上传策略[J]. 计算机研究与发展, 2016, 53(4): 811-823.
[3]  赵冠宇. 基于进化计算的车联网路侧单元部署优化方法研究[D]: [硕士学位论文]. 吉林: 吉林大学, 2019.
[4]  Kim, D., Velasco, Y., Wang, W., et al. (2017) A New Comprehensive RSU Installation Strategy for Cost-Efficient VANET Deployment. IEEE Transactions on Vehicu-lar Technology, 66, 4200-4211.
[5]  Wu, T.J., Liao, W.J. and Chang, C.J. (2012) A Cost-Effective Strategy for Road Side Unit Placement in Vehicular Network. IEEE Transactions on Communications, 60, 2295-2303.
https://doi.org/10.1109/TCOMM.2012.062512.100550
[6]  Abdrabou, A. and Zhuang, W.H. (2011) Probabilistic Delay Control and Roadside Unit Placement or Vehicular Ad Hoc Networks with Disrupted Connectivity. IEEE Journal on Selected Areas in Communications, 29, 129-139.
https://doi.org/10.1109/JSAC.2011.110113
[7]  贾宗璞, 杨焕焕, 谢果君. 车联网中时延约束的路侧单元部署方案研究[J]. 西安交通大学学报, 2019, 53(4): 128-135.
[8]  Lee, J. and Kim, C. (2010) A Roadside Unit Place-ment Scheme for Vehicular Telematics Networks. In: Kim, T.-H. and Adeli, H., Eds., Advances in Computer Science and Information Technology, 6059, 196-202.
https://doi.org/10.1007/978-3-642-13577-4_17
[9]  Sankaranarayanan, M., Mala, C. and Mathew, S. (2015) Ge-netic Algorithm Based Efficient RSU Distribution to Estimate Travel Time for Vehicular Users. 2015 Second Interna-tional Conference on Soft Computing and Machine Intelligence (ISCMI), Hong Kong, 30-34.
https://doi.org/10.1109/ISCMI.2015.11
[10]  Lin, C.-C., Deng, D.-J., et al. (2015) Optimal Two-Lane Placement for Hybrid VANET-Sensor Networks. IEEE Transactions on Industrial Electronics, 62, 7883-7891.
https://doi.org/10.1109/TIE.2015.2418314
[11]  刘长平, 叶春明. 具有混沌搜索策略的蝙蝠优化算法及性能仿真[J]. 系统仿真学报, 2013, 25(6): 1183-1188.
[12]  杨红浩, 周治平. 一种适于SVM入侵检测的余弦时变粒子群方法[J]. 控制工程, 2020, 27(9): 1589-1594.
[13]  孟凯露, 岳克强, 尚俊娜. 基于元胞蝙蝠算法的无线传感器网络节点定位研究[J]. 电信科学, 2017, 33(11): 56-65.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133