All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

模拟实际光照的近日节律模型研究
The Circadian Model with the Simulated Actual Illumination

DOI: 10.12677/DSC.2021.101003, PP. 24-33

Keywords: 近日节律,视交叉上核(SCN),耦合强度的离散
Circadian Rhythm
, Suprachiasmatic Nucleus (SCN), Dispersion of Coupling Strength

Full-Text   Cite this paper   Add to My Lib

Abstract:

为适应外界昼夜周期变化,哺乳动物根据外界环境以及生物体内各种因素变化,通过生物钟的导引来维持其正常运转。已有文献假定每天的光照是固定值,但实际中每天光照是随时间变化的。本文首先建立更加符合实际的光照模型,然后讨论在不同光照强度下腹外侧神经元振子数占总神经元振子数的比值以及神经递质耦合强度的离散程度对生物钟的导引的影响。和在周期光暗循环下相比,在模拟实际光照下的光照强度也对生物钟的导引起决定性作用,腹外侧所占神经元振子比值与神经递质耦合强度的离散程度对生物钟的导引影响也较小,背内侧与腹外侧的分裂现象更少,生物钟导引到外界周期的能力更强。
To adapt to the circadian changes of the outside world, mammals regulate the biological clocks to maintain their normal operation according to the changes in the outside environment and various internal biological factors. In the existing literature, the illumination of each day is assumed to be fixed, but it changes over time. This paper firstly establishes a more realistic illumination model, then discusses the influence of the dispersion degree of neurotransmitter coupling strength and the ratio of the number of ventrolateral neurons to the total number of neurons under different light intensity on the entrainment of the SCN. The experimental results show that the illumination intensity plays a decisive role in the entrainment of the SCN, while the ratio of neurons in the ventrolateral region and the dispersion degree of neurotransmitter coupling intensity have little influence on the entrainment of the SCN. Compared with the periodic dark cycle, the illumination intensity also plays a decisive role in the entrainment, and the ratio of the neurons in the ventrolateral area and the dispersion degree of the neurotransmitter coupling intensity also have little influence on it. However, under the simulating actual illumination, there are fewer splits and a stronger ability of the entrainment to the external cycles.

References

[1]  Gonze, D., Bernard, S., Waltermann, C., Achim, K. and Hanspeter, H. (2005) Spontaneous Synchronization of Coupled Circadian Oscillators. Biophysical Journal, 89, 120-129.
https://doi.org/10.1529/biophysj.104.058388
[2]  Welsh, D.K., Takahashi, J.S. and Kay, S.A. (2010) Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annual Review of Physiology, 72, 551-577.
https://doi.org/10.1146/annurev-physiol-021909-135919
[3]  Vasalou, C., Herzog, E.D. and Henson, M.A. (2009) Small-World Network Models of Intercellular Coupling Predict Enhanced Synchronization in the Suprachiasmatic Nucleus. Journal of Biological Rhythms, 24, 243-254.
https://doi.org/10.1177/0748730409333220
[4]  孙文, 陈忠. 基于一个控制器的非线性耦合复杂网络牵制控制同步研究(英文) [J]. 长江大学学报(自然科学版)理工卷, 2010, 7(3): 9-13.
[5]  Scheer, F.A.J.L., Wright, K.P., Kronauer, R.E. and Czeisler, C.A. (2007) Plasticity of the Intrinsic Period of the Human Circadian Timing System. PLoS ONE, 2, e721.
https://doi.org/10.1371/journal.pone.0000721
[6]  Bernard, S., Gonze, D., Cajavec, B., Herzel, H. and Kramer, A. (2007) Synchronization Induced Rhythmicity of Circadian Oscillators in the Suprachiasmatic Nucleus. PLoS Computational Biology, 3, 667-676.
https://doi.org/10.1371/journal.pcbi.0030068
[7]  Smith, M.R., Burgess, H.J., Fogg, L.F., Eastman, C.I. and Shin, Y. (2009) Racial Differences in the Human Endogenous Circadian Period. PLoS ONE, 4, e6014.
https://doi.org/10.1371/journal.pone.0006014
[8]  孙芳玲, 郭德玉, 王文. 光照对大脑功能的影响研究进展[J]. 照明工程学报, 2017, 28(6): 16-19.
[9]  邢陈, 宋伦. 昼夜节律产生和维持的调控系统[J]. 军事医学, 2017, 41(8): 698-702.
[10]  顾长贵. 不同光照条件下的哺乳动物近日节律模型[D]: [博士学位论文]. 上海: 华东师范大学, 2011.
[11]  Ute, A., Granada, A.E., Westermark, P.O., Markus, H., Achim, K. and Hanspeter, H. (2014) Coupling Governs Entrainment Range of Circadian Clocks. Molecular Systems Biology, 6, 438.
https://doi.org/10.1038/msb.2010.92
[12]  Locke, J.C., Westermark, P.O., Kramer, A. and Herzel, H. (2008) Global Parameter Search Reveals Design Principles of the Mammalian Circadian Clock. BMC Systems Biology, 2, 22.
https://doi.org/10.1186/1752-0509-2-22
[13]  Noguchi, T., Watanabe, K., Ogura, A. and Yamaoka, S. (2004) The Clock in the Dorsal Suprachiasmatic Nucleus Runs Faster than That in the Ventral. The European Journal of Neuroscience, 20, 3199-3202.
https://doi.org/10.1111/j.1460-9568.2004.03784.x
[14]  秦宁, 闵清, 胡文祥. 生物钟的调控[J]. 交叉科学快报, 2018, 2(4): 93-102.
[15]  贾兴, 孙海义. 复杂网络同步控制方法研究综述[J]. 动力系统与控制, 2018, 7(4): 318-327.
[16]  郭向东, 陈芳跃. 特征多项式理论在布尔控制网络中的应用[J]. 动力系统与控制, 2018, 7(3): 214-225.
[17]  李嘉敏, 宾红华, 黄振坤. 具有不匹配参数的脉冲离散网络准同步[J]. 动力系统与控制, 2017, 6(4): 158-163.
[18]  谭亚华, 谭建国. 混合时滞随机Hopfield神经网络的均方渐近稳定性[J]. 动力系统与控制, 2019, 8(4): 263-270.
[19]  秦曦明, 郭金虎. 哺乳动物生物钟同步化的研究进展[J]. 科学通报, 2017, 62(25): 2849-2856.
[20]  肖义军, 钟磊发. 哺乳动物昼夜节律的调控及其分子机制[J]. 生物学通报, 2018, 53(5): 2-4.
[21]  Welsh, D.K. (2009) Limits of Single-Cell Autonomy in the Suprachiasmatic Nucleus. Sleep & Biological Rhythms, 7, 252-259.
https://doi.org/10.1111/j.1479-8425.2009.00425.x
[22]  Baba, K., Ribelayga, C.P., Iuvone, P.M. and Gianluca, T. (2018) The Retinal Circadian Clock and Photoreceptor Viability. Advances in Experimental Medicine and Biology, 1074, 345-350.
https://doi.org/10.1007/978-3-319-75402-4_42
[23]  Gu, C., Wang, J. and Liu, Z. (2009) Free-Running Period of Neurons in the Suprachiasmatic Nucleus: Its Dependence on the Distribution of Neuronal Coupling Strengths. Physical Review E, 80, Article ID: 030904.
https://doi.org/10.1103/PhysRevE.80.030904
[24]  Reppert, S.M. and Weaver, D.R. (2001) Molecular Analysis of Mammalian Circadian Rhythms. Annual Review of Physiology, 63, 647.
https://doi.org/10.1146/annurev.physiol.63.1.647
[25]  Huang, R.C. (2018) The Discoveries of Molecular Mechanisms for the Circadian Rhythm: The 2017 Nobel Prize in Physiology or Medicine. Biomedical Journal, 41, 5-8.
https://doi.org/10.1016/j.bj.2018.02.003
[26]  Liang, X., Tang, M., Dhamala, M. and Liu, Z. (2009) Phase Synchronization of Inhibitory Bursting Neurons Induced by Distributed Time Delays in Chemical Coupling. Physical Review E, 80, Article ID: 066202.
https://doi.org/10.1103/PhysRevE.80.066202
[27]  岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413