全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

miRNA在沙田柚配子体自交不亲和反应中的差异表达与功能分析
Differential Expression and Functional Analysis of miRNA in Self-Incompatibility Reaction of Gametophytes of Citrus Citrus grandis var. Shatinyu Hort

DOI: 10.12677/BR.2021.101003, PP. 10-18

Keywords: 沙田柚,配子体自交不亲和,花柱,miRNA,差异表达
Citrus grandis var. Shatinyu Hort
, Gametophytic Self-Incompatibility, Styles, miRNA, Differential Expression

Full-Text   Cite this paper   Add to My Lib

Abstract:

以沙田柚自交1~3 d以及异交1~3 d花柱为实验材料,构建小RNA测序文库。利用HiSeq深度测序对Small RNA进行测序,然后对差异表达miRNA进行分类注释和靶基因预测,并对靶基因进行GO功能注释以及KEGG pathway注释。结果表明自交1~3 d花柱中已知miRNA的个数分别为178、179和186个,而新miRNA分别为640、739和801个。异交1~3 d花柱中的已知miRNA的个数分别为232、122和219个,新miRNA分别为1184、476和836个。在YJ1/ZJ1、YJ2/ZJ2、YJ3/ZJ3的比对中共获得了16个差异表达的已知miRNA以及23个差异表达的新miRNA。差异表达miRNA靶基因的GO功能显著性富集分析结果表明,这些miRNA靶基因的功能涉及到RNA降解、转录因子、植物激素、植物与病原菌相互作用、结合功能、激酶等代谢过程。通过本研究,挖掘出了一些与沙田柚自交不亲和相关的miRNA,可为今后阐明沙田柚配子体自交不亲和的分子机理提供依据。
This study aimed to understand the self-incompatibility mechanism in Citrus grandis var. Shatinyu. The one day, two days and three days styles of Shatinyu after self-pollination and cross-pollination were used to construct small RNA libraries and the all Small RNA were sequenced by high-throughput sequencing technique. Then, the differentially expressed miRNAs were classified and predicted, and the target genes were annotated and the KEGG pathway was used to investigate the effect of miRNA on the self-incompatibility of Citrus grandis var. Shatinyu. The results showed that there were 178, 179 and 186 known miRNA and 640, 739 and 801 novel miRNA in the 1~3 d self-pollination style, respectively. There were 232, 122 and 219 known miRNA and 1184, 476 and 836 novel miRNA in the 1~3 d cross-pollination style, respectively. Moreover, statistics of differentially expressed miRNA showed that there were 16 differentially expressed known miRNA and 23 differentially expressed novel miRNA coexisted in ZJ1/YJ1, ZJ2/YJ2 and ZJ3/YJ3. Gene Ontology enrichment analysis showed that the function of differentially expressed miRNA target gene was mainly involved in responsing to RNA degradation, transcription factors, plant hormones, plant-pathogen interaction, binding function, kinase and other metabolic processes. In sum, through this study, some miRNAs associated with self-incompatibility in Shatianyu were discovered. These results will provide a theoretical reference for further exploration of self-incompatibility molecular mechanism in Citrus grandis var. Shatinyu.

References

[1]  Takayama, S. and Isogai, A. (2005) Self-Incompatibility in Plants. Annual Review of Plant Biology, 56, 467-489.
https://doi.org/10.1146/annurev.arplant.56.032604.144249
[2]  Sassa, H., Nishio, T., Kowyama, Y., Hirano, H., Koba, T. and Ikehashi, H. (1996) Self-Incompatibility (S) Alleles of the Rosaceae Encode Members of a Distinct Class of the T2/S Ribonuclease Superfamily. Molecular and General Genetics MGG, 250, 547-557.
https://doi.org/10.1007/BF02174443
[3]  Anderson, M.A., Mcfadden, G., Bernatzky, R., Atkinson, A., Orpin, T., Dedman, H., et al. (1989) Sequence Variability of Three Alleles of the Self-Incompatibility Gene of Nicotiana alata. Plant Cell, 1, 483-491.
https://doi.org/10.1105/tpc.1.5.483
[4]  Ai, Y.J., Singh, A., Coleman, C.E., Ioerger, T.R., Kheyr-Pour, A. and Kao, T.-H. (1990) Self-Incompatibility in Peitunia inflata: Isolation and Characterization of cDNAs Encoding Three S-Allele-Associated Proteins. Sexual Plant Reproduction, 3, 130-138.
https://doi.org/10.1007/BF00198857
[5]  Xue, Y., Carpenter, R., Dickinson, H.G. and Coen, E.S. (1996) Origin of Allelic Diversity in Antirrhinum S Locus RNases. Plant Cell, 8, 805-814.
https://doi.org/10.1105/tpc.8.5.805
[6]  Takayama, S., Shiba, H., Iwano, M., Shimosato, H., Che, F.S., Kai, N., et a1. (2000) The Pollen Determinant of Self-Incompatibility in Brassica campestris.Proceedings of the National Academy of Sciences of the United States of America, 97, 1920-1925.
https://doi.org/10.1073/pnas.040556397
[7]  薛妙男, 陈腾士, 杨继华. 沙田柚自交和异交亲和性观察[J]. 园艺学报, 1995, 22(2): 127-132.
[8]  薛妙男, 杨继华. 沙田柚花粉管在花柱中的生长途径及其识别[J]. 广西师范大学学报(自然科学版), 2001, 19(2): 60-66.
[9]  杨继华, 李红艳, 薛妙男. 沙田柚花柱S-糖蛋白的分离与鉴定[J]. 广西师范大学学报(自然科学版), 2000, 18(4): 66-70.
[10]  杨继华, 尧桂荣, 薛妙男. 沙田柚花柱S-糖蛋白的纯化和N-端序列测定[J]. 广西师范大学学报(自然科学版), 2001, 19(1): 72-79.
[11]  秦新民,李惠敏,薛妙男, 等. 沙田柚自交, 异交花粉管蛋白的双向电泳分析[J].广西植物, 2004, 24(6): 566-569.
[12]  秦新民, 万珊, 李惠敏, 等. 沙田柚无机焦磷酸酶基因的cDNA克隆及序列分析[J]. 广西植物, 2015, 35(6): 842-847.
[13]  Qin, X.M., Zhang, Y., Liu, Y.J., Guo, D.N. and Li, H.M. (2018) Molecular Mechanisms Underlying the Participation of Ribonuclease T2 Gene into Self-Incompatibility of Citrus grandis var. Shatianyu Hort. Cellular and Molecular Biology, 64, 126-132.
https://doi.org/10.14715/cmb/2018.64.2.22
[14]  Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5
[15]  Jones-Rhoades, M.W., Bartel, D.P. and Bartel, B. (2006) MicroRNAs and Their Regulatory Roles in Plants. Annual Review of Plant Biology, 57, 19-53.
https://doi.org/10.1146/annurev.arplant.57.032905.105218
[16]  Lang, Q.L., Jin, C.Z., Lai, L.Y., Feng, J.L., Chen, S.N. and Chen, J.S. (2010) Tobacco MicroRNAs Prediction and Their Expression Infected with Cucumber mosaic Virus and Potato virus X. Molecular Biology Reports, 38, 1523-1531.
https://doi.org/10.1007/s11033-010-0260-6
[17]  Yu, Y., Jia, T. and Chen, X. (2017) The “How” and “Where” of Plant MicroRNAs. New Phytologist, 216, 1002-1017.
https://doi.org/10.1111/nph.14834
[18]  陈伟. 莱芜猪和大白猪背最长肌miRNA与mRNA转录组测序及特征分析[D]: [博士学位论文]. 泰安: 山东农业大学, 2014.
[19]  Chapman, L.A. and Goring, D.R. (2011) Misregulation of Phosphoinositides in Arabidopsis Thaliana Decreases Pollen Hydration and Maternal Fertility. Sexual Plant Reproduction, 24, 319-326.
https://doi.org/10.1007/s00497-011-0172-1
[20]  Palanivelu, R., Brass, L., Edlund, A.F. and Preuss, D. (2003) Pollen Tube Growth and Guidance Is Regulated by POP2, an Arabidopsis Gene That Controls GABA Levels. Cell, 114, 47-59.
https://doi.org/10.1016/S0092-8674(03)00479-3
[21]  Poulter, N.S., Bosch, M. and Franklin-Tong, V.E. (2011) Proteins Implicated in Mediating Self-Incompatibility-Induced Alterations to the Actin Cytoskeleton of Papaver Pollen. Annals of Botany, 108, 659-675.
https://doi.org/10.1093/aob/mcr022
[22]  Hewitt, F.R., Hough, T., O’Neill, P., Sasse, J.M., Williams, E.G. and Rowan, K.S. (1985) Effect of Brassinolide and Other Growth Regulators on the Germination and Growth of Pollen Tubes of Prunus avium Using a Multiple Hanging-Drop Assay. Functional Plant Biology, 12, 201-211.
https://doi.org/10.1071/PP9850201
[23]  Guan, Y., Guo, J., Li, H. and Yang, Z.B. (2013) Signaling in Pollen Tube Growth: Crosstalk, Feedback, and Missing Links. Molecular Plant, 6, 1053-1064.
https://doi.org/10.1093/mp/sst070
[24]  Bosco, C.D., Dovzhenko, A., Liu, X., Woerner, N., Rensch, T., Eismann, M., et al. (2012) The Endoplasmic Reticulum Localized PIN8 is a Pollen-Specific Auxin Carrier Involved in Intracellular Auxin Homeostasis. The Plant Journal, 71, 860-870.
https://doi.org/10.1111/j.1365-313X.2012.05037.x
[25]  Ding, Z.J., Wang, B.J., Moreno, I., Dupláková, N., Simon, S., Carraro, N., et al. (2012) ER-Localized Auxin Transporter PIN8 Regulates Auxin Homeostasis and Male Gametophyte Development in Arabidopsis. Nature Communications, 3, Article No. 941.
https://doi.org/10.1038/ncomms1941
[26]  McClure, B.A., Gray, J.E., Anderson, M.A., et al. (1990) Self-Incompatibility in Nicotiana alata Involves Degradation of Pollen rRNA. Nature, 347, 757-760.
https://doi.org/10.1038/347757a0
[27]  Wang, C.L., Xu, G.H., Jiang, X.T., Chen, G., Wu, J., Wu, H.-Q. and Zhang, S.-L. (2009) S-RNase Triggers Mitochondrial Alteration and DNA Degradation in the Incompatible Pollen Tube of Pyrus pyrifolia in Vitro. The Plant Journal, 57, 220-229.
https://doi.org/10.1111/j.1365-313X.2008.03681.x
[28]  高亢, 杜娟, 侯名语, 等. 肌醇磷脂信号组分调节花粉发育和花粉管生长的研究进展[J]. 植物学报, 2013, 48(2): 210-218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133