The results of measurements of the Raman spectra in the same group of monolayer graphene samples, successively subjected to irradiation with different ions, prolonged aging, and annealing under different conditions, are considered. Changes in the position, width, and intensity of the Raman lines are analyzed in the study of the following problems: comparison of the results of irradiation with various ions, the influence of prolonged aging on the spectra of irradiated samples, the mechanism of broadening of Raman scattering lines caused by an increase in the density of radiation defects, the consequences of annealing of radiation damages in vacuum and in the atmosphere of the forming gas, the contribution of doping and lattice deformation to the shift of the position of the Raman lines after annealing. The results obtained made it possible to determine the level of stability of defects introduced by radiation, to reveal the possibility of restoring the damaged lattice using annealing. Since the results relate to graphene deposited on a widely used SiO2/Si substrate, they may be of interest when using ion irradiation to change the properties of graphene in appropriate devices.
References
[1]
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
[2]
Kim, K., Choi, J.Y., Kim, T., Cho, S.H. and Chung, H.J. (2011) A Role for Graphene in Silicon-Based Semiconductor Devices. Nature, 479, 338-344. https://doi.org/10.1038/nature10680
[3]
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S. (2007) Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Materials, 6, 652-655. https://doi.org/10.1038/nmat1967
[4]
Yin, Z., Sun, S., Salim, T., Wu, S., Huang, X., He, Q., Lam, Y.M. and Zhang, H. (2010) Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano, 4, 5263-5268. https://doi.org/10.1021/nn1015874
[5]
Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., Vandersypen, L.M.K. and Dekker, C. (2010) DNA Translocation through Graphene Nanopores. Nano Letters, 10, 3163-3167. https://doi.org/10.1021/nl102069z
[6]
Wang, Q., Mao, W., Ge, D., Zhang, Y., Shao, Y. and Ren, N. (2013) Effects of Ga Ion-Beam Irradiation on Monolayer Grapheme. Applied Physics Letters, 103, Article ID: 073501. https://doi.org/10.1063/1.4818458
[7]
Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L. and Gong, J.R. (2010) Controllable N-Doping of Graphene. Nano Letters, 10, 4975-4980. https://doi.org/10.1021/nl103079j
[8]
Buchowicz, G., Stone, P.R., Robinson, J.T., Cress, C.D., Beeman, J.W. and Dubon, O.D. (2011) Correlation between Structure and Electrical Transport in Ion-Irradiated Graphene Grown on Cu Foils. Applied Physics Letters, 98, Article ID: 032102. https://doi.org/10.1063/1.3536529
[9]
Nanda, G., Goswami, S., Watanabe, K., Taniguchi, T. and Alkemade, P.F.A. (2015) Defect Control and n-Doping of Encapsulated Graphene by Helium-Ion-Beam Irradiation. Nano Letters, 15, 4006-4012. https://doi.org/10.1021/acs.nanolett.5b00939
[10]
Ferrari, A.C. and Basko, D.M. (2013) Raman Spectroscopy as a Versatile Tool for Studying the Properties of Grapheme. Nature Nanotechnology, 8, 235-246. https://doi.org/10.1038/nnano.2013.46
[11]
Jorio, A., Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Moutinho, M.V.O., Capaz, R.B. and Achete, C.A. (2010) Raman Study of Ion-Induced Defects in N-Layer Graphene. Journal of Physics: Condensed Matter, 22, Article ID: 334204. https://doi.org/10.1088/0953-8984/22/33/334204
[12]
Dresselhaus, M.S., Jorio, A., Filho, A.G.S. and Saito, R. (2010) Defect Characterization in Graphene and Carbon Nanotubes Using Raman Spectroscopy. Philosophical Transactions of the Royal Society A, 368, 5355. https://doi.org/10.1098/rsta.2010.0213
[13]
Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A. and Dresselhaus, M.S. (2011) Raman Spectroscopy of Graphene and Carbon Nanotubes. Advances in Physics, 60, 413-550. https://doi.org/10.1080/00018732.2011.582251
[14]
Shlimak, I., Haran, A., Zion, E., Havdala, T., Kaganovskii, Y., Butenko, A.V., Wolfson, L., Richter, V., Naveh, D., Sharoni, A., Kogan, E. and Kaveh, M. (2015) Raman Scattering and Electrical Resistance of Highly Disordered Grapheme. Physical Review B, 91, Article ID: 045414. https://doi.org/10.1103/PhysRevB.91.045414
[15]
Butenko, A., Zion, E., Kaganovskii, Y., Wolfson, L., Richter, V., Sharoni, A., Kogan, E., Kaveh, M. and Shlimak, I. (2016) Influence of Ageing on Raman Spectra and the Conductivity of Monolayer Graphene Samples Irradiated by Heavy and Light Ions. Journal of Applied Physics, 120, Article ID: 044306. https://doi.org/10.1063/1.4959880
[16]
Zion, E., Butenko, A., Kaganovskii, Y., Wolfson, L., Richter, V., Sharoni, A., Kogan, E., Kaveh, M. and Shlimak, I. (2017) Effect of Annealing on Raman Spectra of Monolayer Graphene Samples Gradually Disordered by Ion Irradiation. Journal of Applied Physics, 121, Article ID: 114301. https://doi.org/10.1063/1.4978312
[17]
Shlimak, I., Butenko, A., Kogan, E. and Kaveh, M. (2019) Irradiation-Induced Broadening of the Raman Spectra in Monolayer Grapheme. Journal of Applied Physics, 126, Article ID: 194302. https://doi.org/10.1063/1.5111354
[18]
Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., Tolvanen, A., Nordlund, K. and Keinonen, J. (2010) Effects of Ion Bombardment on a Two-Dimensional Target: Atomistic Simulations of Graphene Irradiation. Physical Review B, 81, Article ID: 153401. https://doi.org/10.1103/PhysRevB.81.153401
[19]
Lucchese, M.M., Stavale, F., Martins Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Rodrigo, B., Capaz, R.B., Achete, C.A. and Jorio, A. (2010) Quantifying Ion-Induced Defects and Raman Relaxation Length in Grapheme. Carbon, 48, 1592-1597. https://doi.org/10.1016/j.carbon.2009.12.057
[20]
Martins Ferreira, E.H., Moutinho, M.V.O., Stavale, F., Lucchese, M.M., Capaz, R.B., Achete, C.A. and Jorio, A. (2010) Evolution of the Raman Spectra from Single-, Few-, and Many-Layer Graphene with Increasing Disorder. Physical Review B, 82, Article ID: 125429. https://doi.org/10.1103/PhysRevB.82.125429
[21]
Temme, N.M. (2010) Voigt Function. In: Olver, W.J., Frank, L., Daniel, M., Boisvert, R.F. and Clark, C.W., Eds., NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 159-172.
[22]
Das, A., Pisana, S., Chakraborty, B., Piscanes, S., Saha, S.K., Waghmare, U.V., Novoselov, K.S., Krishnamurthy, H.R., Geim, A.K., Ferrari, A.C. and Sood, A.K. (2008) Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nature Nanotechnology, 3, 210-215. https://doi.org/10.1038/nnano.2008.67
[23]
Malard, M.L., Pimenta, M.A., Dresselhaus, G. and Dresselhaus, M.S. (2009) Raman Spectroscopy in Grapheme. Physics Reports, 473, 51-87. https://doi.org/10.1016/j.physrep.2009.02.003
[24]
Zhou, Y.-B., Liao, Z.-M., Wang, Y.-F., Duesberg, G.S., Xu, J., Fu, Q., Wu, X.-S. and Yu, D.-P. (2010) Ion Irradiation Induced Structural and Electrical Transition in Graphene. The Journal of Chemical Physics, 133, Article ID: 234703. https://doi.org/10.1063/1.3518979
[25]
Childres, I., Jauregui, L.A., Tian, J. and Chen, Y.P. (2011) Effect of Oxygen Plasma Etching on Graphene Studied Using Raman Spectroscopy and Electronic Transport Measurements. New Journal of Physics, 13, Article ID: 025008. https://doi.org/10.1088/1367-2630/13/2/025008
[26]
Kumar, K., Kim, Y.S. and Yang, E.H. (2013) The Influence of Thermal Annealing to Remove Polymeric Residue on the Electronic Doping and Morphological Characteristics of Grapheme. Carbon, 65, 35-45. https://doi.org/10.1016/j.carbon.2013.07.088
[27]
Wang, X.S., et al. (2013) Thermal Annealing of Exfoliated Graphene. Journal of Nanomaterials, 2013, Article ID: 101765. https://doi.org/10.1155/2013/101765
[28]
Lin, Y.C., Lu, C.C., Yeh, C.H., Jin, C., Suenaga, K. and Chiu, P.W. (2012) Graphene Annealing: How Clean Can It Be? Nano Letters, 12, 414-419. https://doi.org/10.1021/nl203733r
[29]
Sojoudi, H., Baltazar, J., Henderson, C. and Graham, S. (2012) Impact of Post-Growth Thermal Annealing and Environmental Exposure on the Unintentional Doping of CVD Graphene Films. Journal of Vacuum Science & Technology B, 30, Article ID: 041213. https://doi.org/10.1116/1.4731472
[30]
Edera, M. and Zaitsev, A.M. (2015) Ion Irradiation of Nanocrystalline Graphene on Quartz and Sapphire.
[31]
Jia, K., Su, Y., Chen, Y., Luo, J., Yang, J., Lv, P., Zhang, Z., Zhu, H., Zhao, C. and Ye, T. (2015) Effects of Defects and Thermal Treatment on the Properties of Graphene. Vacuum, 116, 90-95. https://doi.org/10.1016/j.vacuum.2015.03.003
[32]
Imamura, G. and Saiki, K. (2015) Modification of Graphene/SiO2 Interface by UV-Irradiation: Effect on Electrical Characteristics. ACS Applied Materials & Interfaces, 7, 2439-2443. https://doi.org/10.1021/am5071464
[33]
Ni, Z.H., Wang, H.M., Luo, Z.Q., Wang, Y.Y., Yu, T., Wu, Y.H. and Shen, Z.X. (2010) The Effect of Vacuum Annealing on Grapheme. Journal of Raman Spectroscopy, 41, 479-483. https://doi.org/10.1002/jrs.2485
[34]
Lee, J.E., Ahn, G., Shim, J., Lee, Y.S. and Ryu, S. (2012) Optical Separation of Mechanical Strain from Charge Doping in Grapheme. Nature Communication, 3, Article No. 1024. https://doi.org/10.1038/ncomms2022