全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Red Onion (Allium cepa L.) Methanolic Extract Increases Extracellular Nucleotide Hydrolysis in Rat Serum

DOI: 10.4236/ojapps.2020.1012061, PP. 864-876

Keywords: Red Onion, Flavonoids, Reactive Oxygen Species, Ectonucleotidases, Vascular Homeostasis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ectonucleotidases are enzymes involved in nucleotides metabolism. The amount of circulating nucleotides may modulate distinct pathophysiological processes in the vasculature, including platelet aggregation and vascular tone. Onion (Allium cepa L.) phenolic compounds modulate enzymatic activity. The present study evaluated the total phenolic content of red onion methanolic extract, its antioxidant capacity, and its ability to interfere in nucleotides hydrolyses in rat serum. Total phenolic content was determined with the Folin-Ciocalteau reagent using gallic acid as a standard, while total flavonoid content was obtained through the aluminum chloride colorimetric method with quercetin as a standard. Antioxidant capacity was evaluated from the ability of the extract to scavenge ABTS·+ and DPPH· radicals. ATP, ADP, AMP, and p-Nph-5'-TMP hydrolyses were colorimetrically determined in response to different onion extract concentrations (0, 125, 250, 500, or 1000 μg/mL). Phenolic content of the extract was 54.35 mg GAE 100 g-1 sample, while flavonoid content was 7.22 mg quercetin g-1 sample. The IC50 value for ABTS·+ was 374.13 ± 7.52 μg/mL, while it was 440.29 ± 15.17 μg/mL for DPPH·. Red onion extract increased ADP and p-Nph-5'-TMP hydrolysis. The results confirmed that red onion contains high content of antioxidant, mainly flavonoids, and high antioxidant capacity. Additionally, biochemical studies suggest that the increased ADP breakdown may be important to regulate vascular processes. As it occurs for other enzymes, the antioxidant capacity of onion extract may neutralize reactive oxygen species (ROS) formation and favor ectonucleotidase activity and the hydrolysis of ADP, a major platelet agonist.

References

[1]  Burnstock, G. (2016) Short and Long-Term (Trophic) Purinergic Signaling. Philosophical Transactions B, 371, Article ID: 20150422.
https://doi.org/10.1098/rstb.2015.0422
[2]  Burnstock, G. (2017) Purinergic Signaling in the Cardiovascular System. Circulation Research, 120, 207-228.
https://doi.org/10.1161/CIRCRESAHA.116.309726
[3]  Burnstock, G. (2015) Intracellular Expression of Purinoceptors. Purinergic Signaling, 11, 275-276.
https://doi.org/10.1007/s11302-015-9455-6
[4]  Zimmermann, H. (2001) Ectonucleotidases: Some Recent Developments and a Note on Nomenclature. Drug Development Research, 52, 44-56.
https://doi.org/10.1002/ddr.1097
[5]  Yegutkin, G.G. (2008) Nucleotide- and Nucleoside-Converting Ectoenzymes: Important Modulators of Purinergic Signalling Cascade. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1783, 673-694.
https://doi.org/10.1016/j.bbamcr.2008.01.024
[6]  Zimmermann, H., Zebisch, M. and Sträter, N. (2012) Cellular Function and Molecular Structure of Ecto-Nucleotidases. Purinergic Signaling, 8, 437-502.
https://doi.org/10.1007/s11302-012-9309-4
[7]  Bagheri, B., Zargari, M., Meshkini, F., Dinarvand, K., Mokhberi, V., Azizi. S. and Rasouli, M. (2016) Uric Acid and Coronary Artery Disease, Two Sides of a Single Coin: A Determinant of Antioxidant System or a Factor in Metabolic Syndrome. Journal of Clinical and Diagnostic Research, 10, OC27-OC31.
https://doi.org/10.7860/JCDR/2016/16335.7281
[8]  Cipriani, S., Bakshi, R. and Schwarzschild, M.A. (2014) Protection by Inosine in a Cellular Model of Parkinson’s Disease. Neuroscience, 274, 242-249.
https://doi.org/10.1016/j.neuroscience.2014.05.038
[9]  Martelli, F. and Nunes, F.M.F. (2014) Radicais Livres: Em Busca do Equilíbrio. Ciência e Cultura, 66, 54-57.
http://dx.doi.org/10.21800/S0009-67252014000300017
[10]  Aalto, T.K. and Raivio, K.O. (1993) Metabolism of Extracellular Adenine Nucleotides by Human Endothelial Cells Exposed to Reactive Oxygen Metabolites. American Journal of Physiology, 264, C282-C286.
https://doi.org/10.1152/ajpcell.1993.264.2.C282
[11]  Krötz, F., Sohn, H.Y., Keller, M., Gloe, T., Bolz, S.S., Becker, B.F. and Pohl, U. (2002) Depolarization of Endothelial Cells Enhances Platelet Aggregation through Oxidative Inactivation of Endothelial NTPDase. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 2003-2009.
https://doi.org/10.1161/01.ATV.0000043454.08172.51
[12]  Schmatz, R., Mann, T.R., Spanevello, R., Machado, M.M., Zanini, D., Pimentel, V.C., Stefanello, N., Martins, C.C., Cardoso, A.M., Bagatini, M., Gutierres, J., Leal, C.A.M., Pereira, L.B., Mazzanti, C., Schetinger, M.R. and Morsch, V.M. (2013) Moderate Red Wine and Grape Juice Consumption Modulates the Hydrolysis of the Adenine Nucleotides and Decreases Platelet Aggregation in Streptozotocin-Induced Diabetic Rats. Cell Biochemistry and Biophysics, 65, 129-143.
https://doi.org/10.1007/s12013-012-9407-5
[13]  Onyeoziri, U.P., Romanus, E.N. and Onyekachukwu, U.I. (2016) Assessment of Antioxidant Capacities and Phenolic Contents of Nigerian Cultivars of Onions (Allium cepa L.) and Garlic (Allium sativum L.). Pakistan Journal of Pharmaceutical Sciences, 29, 1183-1188.
[14]  Velioglu, Y.S., Mazza, G., Gao, L. and Oomah, B.D. (1998) Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. Journal of Agricultural and Food Chemistry, 46, 4113-4117.
https://doi.org/10.1021/jf9801973
[15]  Souza, M.M., Recart, V.M., Rocha, M., Cipolatti, E.P. and Badiale-Furlong, E. (2009) Estudo das Condições de Extração de Compostos Fenólicos de Cebola (Allium cepa L.). Revista do Instituto Adolfo Lutz, 68, 192-200.
[16]  Wettasinghe, M. and Shahidi, F. (1999) Evening Primrose Meal: A Source of Natural Antioxidants and Scavenger of Hydrogen Peroxide and Oxygen-Derived Free Radicals. Journal of Agriculture and Food Chemistry, 47, 1801-1812.
https://doi.org/10.1021/jf9810416
[17]  Hossain, M.A. and Rahman, S.M.M. (2011) Total Phenolics, Flavonoids and Antioxidant Activity of Tropical Fruit Pineapple. Food Research International, 44, 672-676.
https://doi.org/10.1016/j.foodres.2010.11.036
[18]  Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26, 1231-1237.
https://doi.org/10.1016/S0891-5849(98)00315-3
[19]  Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995) Use of a Free radical Method to Evaluate Antioxidant Activity. LWT, 28, 25-30.
https://doi.org/10.1016/S0023-6438(95)80008-5
[20]  Oses, J.P., Cardoso, C.M., Germano, R.A., Kirst, I.B., Rücker, B., Fürstenau, C.R., Wink, M.R., Bonan, C.D., Battastini, A.M.O. and Sarkis, J.J. (2004) Soluble NTPDase: An Additional System of Nucleotide Hydrolysis in Rat Blood Serum. Life Sciences, 74, 3275-3284.
https://doi.org/10.1016/j.lfs.2003.11.020
[21]  Chan, K.M., Delfert, D. and Junger K.D. (1986) A Direct Colorimetric Assay for Ca2+ Stimulated ATPase Activity. Analytical Biochemistry, 157, 375-380.
https://doi.org/10.1016/0003-2697(86)90640-8
[22]  Sakura, H., Nagashima, S. and Nakashima, A. (1998) Characterization of Fetal Serum 5’-Nucleotide Phosphodiesterase: A Novel Function as a Platelet Aggregation Inhibitor in Fetal Circulation. Thrombosis Research, 91, 83-89.
https://doi.org/10.1016/S0049-3848(98)00073-5
[23]  Galdón, B.R., Rodriguéz, E.M.R. and Romero, C.D. (2008) Flavonoids in Onion Cultivars (Allium cepa L.). Journal of Food Science, 73, C599-C605.
https://doi.org/10.1111/j.1750-3841.2008.00903.x
[24]  Santas, J., Carbó, R. and Gordon, M.H. (2008) Comparison of the Antioxidant Activity of Two Spanish Onion Varieties. Food Chemistry, 107, 1210-1216.
https://doi.org/10.1016/j.foodchem.2007.09.056
[25]  Nuutila, A.M., Puupponen-Pimiä, R., Aarni, M. and Oksman-Caldentey, K.M. (2003) Comparison of Antioxidant Activities of Onion and Garlic Extracts by Inhibition of Lipid Peroxidation and Radical Scavenging Activity. Food Chemistry, 81, 485-493.
https://doi.org/10.1016/S0308-8146(02)00476-4
[26]  Srinivasan, K. (2014) Antioxidant Potential of Spices and Their Active Constituents. Critical Reviews in Food Science and Nutrition, 54, 352-372.
https://doi.org/10.1080/10408398.2011.585525
[27]  Prakash, D., Singh, B.N. and Upadhyay, G. (2007) Antioxidant and Free Radical Scavenging Activities of Phenols from Onion (Allium cepa). Food Chemistry, 102, 1389-1393.
https://doi.org/10.1016/j.foodchem.2006.06.063
[28]  Floegela, A., Kim, D.O., Chung, S.J., Sung, I.K. and Chun, O.K. (2011) Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-Rich US Foods. Journal of Food Composition and Analysis, 24, 1043-1048.
https://doi.org/10.1016/j.jfca.2011.01.008
[29]  Dudonné, S., Vitrac, X., Coutière, P., Woillez, M. and Mérillon, J-M. (2009) Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57, 1768-1774.
https://doi.org/10.1021/jf803011r
[30]  Aoki, J. (2004) Mechanisms of Lysophosphatidic Acid Production. Seminars in Cell and Developmental Biology, 15, 477-489.
https://doi.org/10.1016/j.semcdb.2004.05.001
[31]  Fürstenau, C.R. (2010) Participation of Purinergic Signaling in L-NAME Induced Arterial Hypertension. Ph.D. Dissertation, Universidade Federal do Rio Grande do Sul, Brazil, 1-157.
[32]  Maffrand, J.P., Bernat, A., Delebassee, D., Defreyn, G., Cazenave, J. and Gordon, J.L. (1988) ADP Plays a Key Role in Thrombogenesis in Rats. Thrombosis and Haemostasis, 59, 225-230.
https://doi.org/10.1055/s-0038-1642759
[33]  Zimmermann, H. (1992) 5’-Nucleotidase: Molecular Structure and Functional Aspects. Biochemical Journal, 285, 345-365.
https://doi.org/10.1042/bj2850345
[34]  Stefan, C., Jansen, S. and Bollen, M. (2006) Modulation of Purinergic Signaling by NNP-Type Ectophosphodiesterases. Purinergic Signaling, 2, Article No. 361.
https://doi.org/10.1007/s11302-005-5303-4
[35]  Johnson, K., Polewski, M., Etten, D.V. and Terkeltaub, R. (2005) Chondrogenesis Mediated by PPi Depletion Promotes Spontaneous Aortic Calcification in NPP1−/−Mice. Arteriosclerosis, Thrombosis and Vascular Biology, 25, 686-691.
https://doi.org/10.1161/01.ATV.0000154774.71187.f0
[36]  Villa-Bellosta, R., Wang, X.N. and Millán, J.L. (2011) Extracellular Pyrophosphate Metabolism and Calcification in Vascular Smooth Muscle. American Journal of Physiology—Heart Circulation Physiology, 301, H61-H68.
https://doi.org/10.1152/ajpheart.01020.2010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133