The
small size of agricultural plots is the main difficulty for crops mapping with
remote sensing data in the Sahelian region of Africa. The study aims to combine
Sentinel-1 (radar) and Sentinel-2 (Optic) data to discriminate millet, maize
and peanut crops. Training plots were used in order to analyse temporal
variation of the three crops’ signals. The
NDVI (Normalized Difference Vegetation Index) was able to differentiate crops
only at the end of the rainy season (October). The
optical data as well as the radar ones could not easily discriminate the three
crops during the growing season, because in that period vegetation cover is
low, and soil contribution to the signals (due to roughness and moisture) was
more important than that of real vegetation. However, the ratio of VH/VV (VH:
incident signal in vertical polarization and reflected signal in horizontal
polarization; VV: incident signal in vertical polarization and reflected signal
in horizontal polarization) gave a difference between millet and the two other
crops at the beginning cultural season (July 11). Difference appears from the
second third of September when the harvest of cereals crops (millet and maize)
began. From middle of October, the peanut signal dropped sharply thus
facilitating the differentiation of peanut from the two other crops. This
analysis led to the identification of data that have could be used to
discriminate these crops (useful data). Classification of the combined useful
data gave an overall high accuracy of 82%, with 96%, 61% and 65% for peanut,
maize and millet, respectively. The non-agricultural areas (water, natural
vegetation, habit, bare soil) were well classified with an accuracy greater
than 90%.
References
[1]
CORAF/WECARD (2007) Strategic Plan 2007-2016. CORAF/WECARD, Dakar.
[2]
Fritz, S., See, L. and Rembold, F. (2010) Comparison of Global and Regional Land Cover Maps with Statistical Information for the Agricultural Domain in Africa. International Journal of Remote Sensing, 31, 2237-2256. https://doi.org/10.1080/01431160902946598
[3]
Vancutsem, C., Marinho, E., Kayitakire, F., See, L. and Fritz, S. (2012) Harmonizing and Combining Existing Land Cover/Land Use Datasets for Cropland Area Monitoring at the African Continental Scale. Remote Sensing, 5, 19-41. https://doi.org/10.3390/rs5010019
[4]
Delrue, J., Bydekerke, L., Eerens, H., Gilliams, S., Piccard, I. and Swinnen, E. (2013) Crop Mapping in Countries with Small-Scale Farming: A Case Study for West Shewa, Ethiopia. International Journal of Remote Sensing, 34, 2566-2582. https://doi.org/10.1080/01431161.2012.747016
[5]
Lambert, M.-J., Waldner and Defourny, P. (2016) Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sensing, 8, 232. https://doi.org/10.3390/rs8030232
[6]
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. and Skakun, S. (2017) Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science, 5, 17. https://doi.org/10.3389/feart.2017.00017
[7]
Onojeghuo, A.O., Blackburn, G.A., Wang, Q., Atkinson, P.M., Kindred, D. and Miao, Y. (2017) Mapping Paddy Rice Fields by Applying Machine Learning Algorithms to Multi-Temporal Sentinel-1A and Landsat Data. International Journal of Remote Sensing, 39, 1042-1067. https://doi.org/10.1080/01431161.2017.1395969
[8]
Bégué, A., Arvor, D., Bellon, B., Betbeder, J., De Abelleyra, D., Ferraz, R., Verón, S., et al. (2018) Remote Sensing and Cropping Practices: A Review. Remote Sensing, 10, 99. https://doi.org/10.3390/rs10010099
[9]
Kaboro, S., Niall, P.H. and Yacouba, D. (2018) Assessing Cropland Area in West Africa for Agricultural Yield Analysis. Remote Sensing, 10, 1785. https://doi.org/10.3390/rs10111785
[10]
Bégué, A., Lebourgeois, V., Bappel, E., Todoroff, P., Pellegrino, A., Baillarin, F. and Siegmund, B. (2010) Spatio-Temporal Variability of Sugarcane Fields and Recom- mendations for Yield Forecast Using NDVI. International Journal of Remote Sensing, 31, 5391-5407. https://doi.org/10.1080/01431160903349057
[11]
Rakotoniaina, S., Rakotomandrindra, P., Ranaivoarimanana, S. and Rakoton- draompiana, S. (2014) La cartographie et la télédétection comme système d’évaluation des TGRNR. Exemple de site d’application: La commune de Didy, région d’Aloatra- Mangoro, Madagascar.
[12]
Lisboa, I.P., Damian, J.M., Cherubin, M.R., Silva Barros, P.P., Fiorio, P.R., Cerri, C.C. and Cerri, C.E.P. (2018) Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal. Agronomy, 8, 196. https://doi.org/10.3390/agronomy8090196
[13]
Knauer, K., Gessner, U., Dech, S. and Kuenzer, C. (2014) Remote Sensing of Vegetation Dynamics in West Africa. International Journal of Remote Sensing, 35, 37-41. https://doi.org/10.1080/01431161.2014.954062
[14]
Nagai, S., Nasahara, K.N., Muraoka, H., Akiyama, T. and Tsuchida, S. (2010) Field Experiments to Test the Use of the Normalized-Difference Vegetation Index for Phenology Detection. Agricultural and Forest Meteorology, 150, 152-160. https://doi.org/10.1016/j.agrformet.2009.09.010
[15]
Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C.M., Arain, M.A., Bohrer, G., Lafleur, P.M., Peichl, M., Gonsamo, A., et al. (2017) Land Surface Phenology Derived from Normalized Difference Vegetation Index (NDVI) at Global Fluxnet Sites. Agricultural and Forest Meteorology, 233, 171-182. https://doi.org/10.1016/j.agrformet.2016.11.193
[16]
Karkauskaite, P., Tagesson, T. and Rasmus Fensholt, R. (2017) Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for Start-of-Season Trend Analysis of the Northern Hemisphere Boreal Zone. Remote Sensing, 9, 485. https://doi.org/10.3390/rs9050485
[17]
Hmimina, G., Dufrene, E., Pontailler, J.Y., Delpierre, N., Aubinet, M., Caquet, B., de Grandcourt, A., Burban, B., Flechard, C., Granier, A., et al. (2013) Evaluation of the Potential of MODIS Satellite Data to Predict Vegetation Phenology in Different Biomes: An Investigation Using Ground-Based NDVI Measurements. Remote Sensing of Environment, 132, 145-158. https://doi.org/10.1016/j.rse.2013.01.010
[18]
Eastman, J.R., Sangermano, F., Machado, E.A., Rogan, J. and Anyamba, A. (2013) Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982-2011. Remote Sensing, 5, 4799-4818. https://doi.org/10.3390/rs5104799
[19]
Diouf, A.A., Hiernaux, P., Brandt, M., Faye, G., Djaby, B., Diop, M.B., Ndione, J.A. and Tychon, B. (2016) Do Agrometeorological Data Improve Optical Satellite-Based Estimations of Herbaceous Yield in Sahelian Semi-Arid Ecosystems? Remote Sensing, 8, 668. http://www.mdpi.com/journal/remotesensing https://doi.org/10.3390/rs8080668
[20]
Zhang, L., Qiao, N., Baig, M.H.A., Huang, C., Lv, X., Sun, X. and Zhang, Z. (2019) Monitoring Vegetation Dynamics Using the Universal Normalized Vegetation Index (UNVI): An Optimized Vegetation Index-VIUPD. Remote Sensing Letters, 10, 629-638. https://doi.org/10.1080/2150704X.2019.1597298
[21]
Gholizadeh, A. and Kopackova, V. (2019) Detecting Vegetation Stress as a Soil Contamination Proxy: A Review of Optical Proximal and Remote Sensing Techniques. International Journal of Environmental Science and Technology, 16, 2511-2524. https://doi.org/10.1007/s13762-019-02310-w
[22]
Faye, G., Frison, P.L., Diouf, A.A., Wade, S., Kane, C.A., Fussi, F., Jarlan, L., Niang, F.K.N., Ndione, J.A. and Mougin, E. (2017) Soil Estimation in the Ferlo Region (Senegal) Using Radar ENVISAT/ASAR and Optical SPOT/VEGETATION Data. The Egyptian Journal of Remote Sensing and Space Science, 21, S13-S22. https://doi.org/10.1016/j.ejrs.2017.11.005
[23]
Brink, M. and Belay, G.M. (2006) Ressources végétales de l’Afrique tropicale 1. Céréales et légumes secs. Foundation PROTA/Backhuys Publishers/CTA, Pays-Bas, Wageningen.
[24]
Stomal-Weigel B. (1988) L’évolution récente et comparée des systèmes de production serer et wolof dans deux villages du vieux Bassin arachidier (Sénégal). Cahier des Sciences Humaines, 24, 17-33.
[25]
Baup, F. (2007) Apport des données Envisat/Asar pour le suivi des surfaces continentales: Applicationà la zone sahélienne. Thèse de l’Université Paul Sabatier de Toulouse, 198 p.
[26]
Zine, S., Jarlan, L., Frison, P.L., Mougin, E., Hiernaux, P. and Rudant, J.P. (2005) Land Surface Parameter with ERS Scatterometer Data over the Sahel: A Comparison between Agro-Pastoral and Pastoral Areas. Remote Sensing of Environment, 693, 438-452. https://doi.org/10.1016/j.rse.2005.04.012
[27]
Tamim, A. (2015) Segmentation et classification des images satellitaires: Application à la détection des zones d’upwelling cotier marocain et mise en place d’un logiciel de suivi spatiotemporel. Traitement du signal et de l’image [eess.SP]. Université Mohammed V Faculté Des Sciences Rabat 2015.
[28]
Faye, G., Frison, P.L., Wade, S., Ndione, J.A., Beye, A.C. and Rudant, J.P. (2011) Etude de la saisonnalité des mesures des diffusiomètres SCAT: Apport au suivi de la végétation au Sahel, cas du Ferlo au Sénégal. Télédétection, 10, 23-31.
[29]
Fatras, C., Frappart, F., Mougin, E., Grippa, M. and Hiernaux, P. (2012) Estimating Surface Soil Moisture over Sahel Using ENVISAT Radar Altimetry. Remote Sensing of Environment, 123, 496-507. https://doi.org/10.1016/j.rse.2012.04.013
[30]
Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, K., Zebker, H. and Zyl, J. (2014) Microwave Radar and Radiometric Remote Sensing. University of Michigan Press, Ann Arbor.
[31]
Grippa, M. and Woodhouse, I.H. (2002) Validation of Surface Scattering Models across Large Footprints for Global Scatterometer Applications. IEEE Transactions on Geoscience and Remote Sensing, 40, 2229-2233. https://doi.org/10.1109/TGRS.2002.804727