全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Comparison of Machine Learning Techniques in the Carpooling Problem

DOI: 10.4236/jcc.2020.812015, PP. 159-169

Keywords: Carpooling, Machine Learning Techniques, Vehicle Traffic Congestion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Urban traffic congestion is a severe and widely studied problem over the decade because of the negative impacts. However, in recent years some approaches emerge as proper and suitable solutions. The Carpooling initiative is one of the most representative efforts to propitiate a responsible use of particular vehicles. Thus, the paper introduces a carpooling model considering the users’ preference to reach an appropriate match among drivers and passengers. In particular, the paper conducts a study of 6 of the most avid classified techniques in machine learning to create a model for the selection of travel companions. The experimental results show the models’ precision and assess the best cases using Friedman’s test. Finally, the conclusions emphasize the relevance of the proposed study and suggest that it is necessary to extend the proposal with more drives and passengers’ data.

References

[1]  Ferguson, E. (1997) The Rise and Fall of the American Carpool: 1970-1990. Transportation, 24, 349-376.
https://doi.org/10.1023/A:1004928012320
[2]  ONU-Hábitat and ONU-Hábitad (2015) Reporte Nacional de Movilidad Urbana en México 2014-2015. Rep. Glob. en Asentam. Humanos, p. 100.
[3]  Ferguson, E. (1990) Demographics of Carpooling. Transportation Research Record, 1496, 142-150.
[4]  Minett, P. and Pearce, J. (2011) Estimating the Energy Consumption Impact of Casual Carpooling. Energies, 4, 126-139.
https://doi.org/10.3390/en4010126
[5]  Bruck, B.P., Incerti, V., Iori, M. and Vignoli, M. (2017) Minimizing CO2 Emissions in a Practical Daily Carpooling Problem. Computers & Operations Research, 81, 40-50.
https://doi.org/10.1016/j.cor.2016.12.003
[6]  Amey, A., Attanucci, J. and Mishalani, R. (2011) Real-Time Ridesharing: Opportunities and Challenges in Using Mobile Phone Technology to Improve Rideshare Services. Transportation Research Record: Journal of the Transportation Research Board, 2, 103-110.
https://doi.org/10.3141/2217-13
[7]  Abrahamse, W. and Keall, M. (2012) Effectiveness of a Web-Based Intervention to Encourage Carpooling to Work: A Case Study of Wellington, New Zealand. Transport Policy, 21, 45-51.
https://doi.org/10.1016/j.tranpol.2012.01.005
[8]  Neoh, J.G., Chipulu, M. and Marshall, A. (2017) What Encourages People to Carpool? An Evaluation of Factors with Meta-Analysis. Transportation, 44, 423-447.
https://doi.org/10.1007/s11116-015-9661-7
[9]  Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M.-E., Wang, X. and Koenig, S. (2013) Ridesharing: The State-of-the-Art and Future Directions. Transportation Research Part B: Methodological, 57, 28-46.
https://doi.org/10.1016/j.trb.2013.08.012
[10]  Malodia, S. and Singla, H. (2016) A Study of Carpooling Behaviour Using a Stated Preference Web Survey in Selected Cities of India. Transportation Planning and Technology, 39, 538-550.
[11]  Berlingerio, M., Ghaddar, B., Guidotti, R., Pascale, A. and Sassi, A. (2017) The GRAAL of Carpooling: Green and Social Optimization from Crowd-Sourced Data. Transportation Research Part C: Emerging Technologies, 80, 20-36.
https://doi.org/10.1016/j.trc.2017.02.025
[12]  Park, Y., Chen, N. and Akar, G. (2018) Who Is Interested in Carpooling and Why: The Importance of Individual Characteristics, Role Preferences and Carpool Markets. Transportation Research Record, 2672, 036119811875688.
https://doi.org/10.1177/0361198118756883
[13]  Anagnostopoulos, T., Anagnostopoulos, C. and Hadjiefthymiades, S. (2011) An Adaptive Machine Learning Algorithm for Location Prediction. International Journal of Wireless Information Networks, 18, 88-99.
https://doi.org/10.1007/s10776-011-0142-4
[14]  Liu, N., Feng, Y., Wang, F., Liu, B. and Tang, J. (2013) Mobility Crowdsourcing: toward Zero-Effort Carpooling on Individual Smartphone. International Journal of Distributed Sensor Networks, 2013, No. 5.
https://doi.org/10.1155/2013/615282
[15]  Galland, S., Knapen, L., Yasar, A.-U.-H., et al. (2014) Multi-Agent Simulation of Individual Mobility Behavior in Carpooling. Transportation Research Part C: Emerging Technologies, 45, 83-98.
https://doi.org/10.1016/j.trc.2013.12.012
[16]  Norman, A.T. (2019) Aprendizaje Automático En Acción: Un Libro Para El Lego, Guía Paso A Paso Para Los Novatos.
[17]  García, C. and Gómez, I. (2006) Algoritmos de aprendizaje: Knn & kmeans. Universidad Carlos III de Madrid, Madrid.
[18]  Dong, T.Y., Yuan, L.L., Cheng, Q., Cao, B. and Fan, J. (2019) Direction-Aware KNN Queries for Moving Objects in a Road Network. World Wide Web, 22, 1765-1797.
https://doi.org/10.1007/s11280-019-00657-1
[19]  Cruz, M.O., Macedo, H. and Guimarães, A. (2015) Grouping Similar Trajectories for Carpooling Purposes. 2015 Brazilian Conference on Intelligent Systems (BRACIS), Natal, 4-7 November 2015, 234-239.
https://doi.org/10.1109/BRACIS.2015.36
[20]  Xiao, Q., He, R. and Yu, J. (2018) Evaluation of Taxi Carpooling Feasibility in Different Urban Areas through the K-Means Matter-Element Analysis Method. Technology in Society, 53, 135-143.
https://doi.org/10.1016/j.techsoc.2018.01.008
[21]  Adhatrao, K., Gaykar, A., Dhawan, A., Jha, R. and Honrao, V. (2013) Predicting Students’ Performance Using ID3 and C4.5 Classification Algorithms. International Journal of Data Mining & Knowledge Management Process, 3, 39-52.
https://doi.org/10.5121/ijdkp.2013.3504
[22]  Mitchell, T.M. (1997) Machine Learning. McGraw-Hill Education, New York.
[23]  Papoutsis, P., Michel, B., Philippe, A. and Duong, T. (2020) Bayesian Hierarchical Models for the Prediction of the Driver Flow and Passenger Waiting Times in a Stochastic Carpooling Service.
https://arxiv.org/abs/2007.08962
[24]  Hertz, J., Krogh, A. and Palmer, R.G. (2018) Introduction to the Theory of Neural Computation. CRC Press, Boca Raton.
https://doi.org/10.1201/9780429499661
[25]  Holm, S. (1979) A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6, 65-70.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133