This work is interested in solving the complex problem of understanding mass transfers in biological media. The contribution of the initial sample size is taken into account. Transfers are established more efficiently in small samples. Thus, from the first 50 minutes, the cubic sample at 1 cm stop is already at 50% while the sample at 4 cm edge is at about 90% of its initial water content. Likewise the shape is combined with the size. But it is revealed that if we fix similar characteristic dimensions, we can bypass the notion of initial shape. Thus the cubic samples 4 cm of edges. 4 cm diameter of spherical shape, 4 cm × 4 cm height-diameter cylindrical one, all dry identically.
References
[1]
Kordylas, J.M. (1991) Processing and Preservation of Tropical and Subtropical Foods. Macmillan Education Ltd., London.
[2]
Dissa, A.O., Desmorieux, H., Savadogo, P.W., Segda, B.G. and Koulidiati, J. (2010) Shrinkage, Porosity and Density Behaviour during Convective Drying of Spirulina. Journal of Food Engineering, 97, 410-418.
https://doi.org/10.1016/j.jfoodeng.2009.10.036
[3]
Sablani, S., Rahman, S. and Al-Habsi, N. (2000) Moisture Diffusivity in Foods an Overview. In: Mujumdar, A.S., Ed., Drying Technology in Agriculture and Food Sciences Enfield, Science Publishers, Plymouth, 35-59.
[4]
Hashemi, G., Mowla, D. and Kazemeini, M. (2009) Moisture Diffusivity and Shrinkage of Broad Beans during Bulk Dryin in an Inert Medium Fluidized Bed Dryer Assisted by Dielectric Heating. Journal of Food and Engineering, 92, 331-338.
https://doi.org/10.1016/j.jfoodeng.2008.12.004
[5]
Roberts, J.S., Tong, C.H. and Lund, D.B. (2002) Drying Kinetics and Time-Temperature Distribution of Pregelatinized Bread. Journal of Food Science, 67, 1080-1087. https://doi.org/10.1111/j.1365-2621.2002.tb09456.x
[6]
Saravacos, G.D. and Maroulis, Z.B. (2001) Transport Properties of Foods. Marcel Dekker, New York. https://doi.org/10.1201/9781482271010
[7]
Rovedo, C.O., Suarez, C. and Viollaz, P.E. (1995) Drying of Foods: Evaluation of a Drying Model. Journal of Food Engineering, 26, 1-12.
https://doi.org/10.1016/0260-8774(94)00037-A
[8]
Crank, J. (1975) The Mathematics of Diffusion. Second Edition, Oxford University Press, London, 69-88.
[9]
Hassini, L., Azzouz, S., Peczalski, R. and Belghith, A. (2007) Estimation of Potato Moisture Diffusivity from Convective Drying Kinetics with Correction for Shrinkage. Journal of Food Engineering, 79, 47-56.
https://doi.org/10.1016/j.jfoodeng.2006.01.025
[10]
Jason, A.C. (1958) A Study of Evaporation and Diffusion Processes in the Drying of Fish Muscle. In: Fundamental Aspects of Dehydration of Foodstuffs, Society of Chemical Industry, London, 103-135.
[11]
Ouoba, K.H., Zougmoré, F., Sam, R., Toguyeni, A. and Desmorieux, H. (2014) Characterization of Okra Convective Drying, Influence of Maturity. Food and Nutrition Sciences, 5, 590-597. https://doi.org/10.4236/fns.2014.56069
[12]
Honoré, O.K., Hélène, D. and François, Z. (2019) What Process Optimizes Convective Drying of Farm Products with Complex Constitution: Case of Okra (Abelmoschus esculentus). Journal of Agricultural Chemistry and Environment, 8, 14-22.
https://doi.org/10.4236/jacen.2019.81002
[13]
Ouoba, K.H. (2013) Séchage des produits agroalimentaires: Influence de la taille, de la forme et de la découpe. These of Doctorate, University of Ouagadougou, Burkina Faso.
[14]
Prabhanjan, D.G., Ramaswamay, H.S. and Raghavan, G.S.V. (1995) Microwave Assisted Air-Drying of Thin Layer Carrots. Journal of Food Engineering, 25, 283-293.
https://doi.org/10.1016/0260-8774(94)00031-4
[15]
Nadeau, J.P. and Puiggali, J.R. (1995) Séchage: Des processus physiques aux procédés industriels. Tec & Doc Lavoisier, Paris.
[16]
Honoré, O.K., Francois, Z. and Hélène, D. (2019) Effect of Farm Product Intrinsic Properties on Convective Drying: Case of Okra. American Journal of Plant Sciences, 10, 101-110. https://doi.org/10.4236/ajps.2019.101009
[17]
Abdou-Salam, G., Honore, O. and François, Z. (2020) Taking into Account the Complex Nature and the Intrinsic Parameters of Agro-Food. Journal of Biophysical Chemistry, 11, 1-13. https://doi.org/10.4236/jbpc.2020.111001
[18]
Ouoba, K.H., Zougmore, F. and Desmorieux, H. (2018) Effect of Initial Size and Shape Importance on Masse Transfer during Convective Drying. Food and Nutrition Sciences, 9, 1514-1524. https://doi.org/10.4236/fns.2018.912109
[19]
Ahouannou, C. (2001) Etude du séchage de produits agroalimentaires tropicaux: Cas du manioc, du piments. Thèse de doctort, Université Nationale de Bénin.
[20]
Villa-Corrales, L., Flores-Prieto, J.J., Xamán-Villaseñor, J.P. and García-Hernández, E. (2010) Numerical and Experimental Analysis of Heat and Moisture Transfer during Drying of Ataulfo Mango. Journal of Food Engineering, 98, 198-206.
https://doi.org/10.1016/j.jfoodeng.2009.12.026
[21]
Perré, P. and May, B. (2002) The Importance of Considering Exchange Surface Area Reduction to Exhibit a Constant Drying Flux Period in Foodstuffs. Journal of Food Engineering, 54, 271-282. https://doi.org/10.1016/S0260-8774(01)00213-8
[22]
Perré, P. and May, B. (2007) The Existence of a First Drying Stage for Potato Proved by Two Independent Methods. Journal of Food Engineering, 78, 1134-1140.
https://doi.org/10.1016/j.jfoodeng.2005.12.025
[23]
Rapusas, R.S. and Driscoll, R.H. (1995) The Thin-Layer Characteristics of White Onion Slices. Drying Technology, 13, 1905-1928.
https://doi.org/10.1080/07373939508917056