全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of the Lipid Components in Desmodesmus and Scenedesmus Strains: Lipid Content, Lipid Classes and Fatty Acid Profile

DOI: 10.4236/ajps.2020.1112148, PP. 2103-2121

Keywords: Microalgae, Desmodesmus sp., Scenedesmus sp.

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lipid composition in terms of the amount of neutral lipids, free fatty acids and polar lipid content is of great importance to make full use possible of this fraction and to define the suitability of its application, either as a raw material for fuel production, nutraceutical purposes or feed. In addition to the fatty components present in the lipid extract, other components may be included, such as: carotenoids, pigments and sterols. The microalgae studied in this work, Scenedesmus sp. and Desmodesmus sp., were subjected to the same growth conditions and evaluated for lipid content, quantification and diversity of lipid components as well as its fatty acid profile. For lipid determination two extraction methods were compared: the J: Schmid-Bondzynski-Ratzlaff and Bligh & Dyer method. For Desmodesmus sp. 5.43% ± 0.41% and 9.18% ± 0.33% of lipids were obtained on an ash-free dry weight basis and for Scenedesmus sp. 12.46% ± 0.38% and 8.16% ± 0.42% of lipids were obtained on an?ash-free dry weight basis using for both methods J: Schmid-Bondzynski-Ratzlaff and Bligh & Dyer, respectively. For the identification of the main lipid components present in the extracts, the Thin layer chromatography (TLC) technique was used. This made it possible,

References

[1]  Halim, R., Gladman, B., Danquah, M.K. and Webley, P.A. (2011) Oil Extraction from Microalgae for Biodiesel Production. Bioresource Technology, 102, 178-185.
https://doi.org/10.1016/j.biortech.2010.06.136
[2]  Singh, J. and Gu, S. (2010) Commercialization Potential of Microalgae for Biofuels Production. Renewable and Sustainable Energy Reviews, 14, 2596-2610.
https://doi.org/10.1016/j.rser.2010.06.014
[3]  Show, K., Lee, D., Tay, J., Lee, T. and Chang, J. (2015) Microalgal Drying and Cell Disruption—Recent Advances. Bioresource Technology, 184, 258-266.
https://doi.org/10.1016/j.biortech.2014.10.139
[4]  Borges, F.C. (2010) Proposta de um modelo conceitual de biorrefinaria com estrutura descentralizada. Tese de doutorado. Escola de Engenharia Química. Universidade Federal do Rio Grande do Sul.
[5]  Borges, L., de Faria, B.M., Odebrecht, C. and Abreu, P.C. (2007) Potencial de absorcao de carbono por espécies de microalgas usadas na aquicultura: Primeiros passos para o desenvolvimento de um mecanismo de desenvolvimento limpo. Atlantica, Rio Grande, 29, 35-46.
[6]  Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y. and Oh, H.-M. (2010) Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresource Technology, 101, S75-S77.
https://doi.org/10.1016/j.biortech.2009.03.058
[7]  Halim, R., Harun, R., Danquah, M.K. and Webley, P.A. (2012) Microalgal Cell Disruption for Biofuel Development. Applied Energy, 91, 116-121.
https://doi.org/10.1016/j.apenergy.2011.08.048
[8]  Huerlimann, R., Nys, R. and Heimann, K. (2010) Growth, Lipid Content, Productivity, and Fatty Acid Composition of Tropical Microalgae for Scale-Up Production. Biotechnology and Bioengineering, 107, 245-257.
https://doi.org/10.1002/bit.22809
[9]  Wu, L.F., Chen, P.C., Huang, A.P. and Lee, C.M. (2011) The Feasibility of Biodiesel Production by Microalgae Using Industrial Wastewater. Bioresource Technology, 113, 14-18.
[10]  Roux, J.-M., Lamotte, H. and Achard, J.-L. (2017) An Overview of Microalgae Lipid Extraction in a Biorefinery Framework. Energy Procedia, 112, 680-688.
https://doi.org/10.1016/j.egypro.2017.03.1137
[11]  Abomohra, A.E.-F., Eladel, H., El-Esawi, M., Wang, S., Wang, Q., He, Z.X., Feng, Y.Q., Shang, H. and Hanelt, D. (2018) Effect of Lipid-Free Microalgal Biomass and Waste Glycerol on Growth and Lipid Production of Scenedesmus obliquus: Innovative Waste Recycling for Extraordinary Lipid Production. Bioresource Technology, 249, 992-999.
https://doi.org/10.1016/j.biortech.2017.10.102
[12]  Sivaramakrishnan, R. and Incharoensakdi, A. (2018) Microalgae as Feedstock for Biodiesel Production under Ultrasound Treatment: A Review. Bioresource Technology, 250, 877-887.
https://doi.org/10.1016/j.biortech.2017.11.095
[13]  Middelberg, A.P.J. (1995) Process Scale Disruption of Microorganisms. Biotechnology Advances, 13, 491-551.
https://doi.org/10.1016/0734-9750(95)02007-P
[14]  Günerken, E., D’Hondt, E., Eppink, M.H.M., Garcia-Gonzalez, L., Elst, K. and Wijffels, R.H. (2015) Cell Disruption for Microalgae Biorefineries. Biotechnology Advances, 33, 243-260.
https://doi.org/10.1016/j.biotechadv.2015.01.008
[15]  Lee, Y., Cho, J.M., Chang, Y.K. and Oh, Y.-K. (2017) Cell Disruption and Lipid Extraction for Microalgal Biorefineries: A Review. Bioresource Technology, 244, 1317-1328.
https://doi.org/10.1016/j.biortech.2017.06.038
[16]  Packer, A., Li, Y.T., Andersen, T., Hu, Q., Kuang, Y. and Sommerfeld, M. (2011) Growth and Neutral Lipid Synthesis in Green Microalgae: A Mathematical Model. Bioresource Technology, 102, 111-117.
https://doi.org/10.1016/j.biortech.2010.06.029
[17]  Díaz, G.Ch., Cruz, Y.R., Fortes, M.M., Viegas, C.V., Carliz, R.G., Furtado, N.C. and Aranda, D.A.G. (2014) Primary Separation of Antioxidants (Unsaponifiables) the Wet Biomass Microalgae Chlamydomonas sp. and Production of the Biodiesel. Natural Science, 6, 1210-1218.
https://doi.org/10.4236/ns.2014.615108
[18]  Güclü-üstündag, O. and Temelli, F. (2004) Correlating the Solubility Behavior of Minor Lipids Components in Supercritical Carbon Dioxide. Journal of Supercritical Fluids, 31, 235-253.
https://doi.org/10.1016/j.supflu.2003.12.007
[19]  Yao, L.X., Gerde, J.A., Lee, S.-L., Wang, T. and Harrata, K.A. (2015) Microalgae Lipid Characterization. Journal of Agricultural and Food Chemistry, 63, 1773-1787.
https://doi.org/10.1021/jf5050603
[20]  Clemmitt, R.H. and Chase, H.A. (2000) Immobilised Metal Affinity Chromatography of β Galactosidase from Unclarified Escherichia coli Homogenates Using Expanded Bed Adsorption. Journal of Chromatography A, 874, 27-43.
https://doi.org/10.1016/S0021-9673(00)00087-X
[21]  Liu, L., Corilo, Y.E. and Marshall, A.G. (2016) Polar Lipid Composition of Biodiesel Algae Candidates Nannochloropsis oculata and Haematococcus pluvialis from Nano Liquid Chromatography Coupled with Negative Electrospray Ionization 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels, 30, 8270-8276.
https://doi.org/10.1021/acs.energyfuels.6b01514
[22]  Yap, W.B., Tey, B.T., Alitheen, N.B. and Tan, W.S. (2010) Purification of His-Tagged Hepatitis B Core Antigen from Unclarified Bacterial Homogenate Using Immobilized Metal Affinity Expanded Bed Adsorption Chromatography. Journal of Chromatography A, 1217, 3473-3480.
https://doi.org/10.1016/j.chroma.2010.03.012
[23]  álvarez-Díaz, D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, M.C. and Perales, J.A. (2015) Wastewater Treatment and Biodiesel Production by Scenedesmus obliquus in a Two-Stage Cultivation Process. Bioresource Technology, 181, 90-96.
https://doi.org/10.1016/j.biortech.2015.01.018
[24]  Lee, Y.-K., Chen, W., Shen, H., Han, D., Li, Y., Jones, H.D.T., TimLin, J.A. and Hu, Q. (2013) Basic Culturing and Analytical Measurement Techniques. In: Handbook of Microalgal Culture: Applied Phycology and Biotechnology, John Wiley & Sons, Ltd., Oxford, 37-68.
https://doi.org/10.1002/9781118567166.ch3
[25]  Bligh, G. and Dyer, W. (1959) A Rapid Method for Total Lipid Extraction and Purification. Canadian Journal of Bio-Chemistry and Physiology, 37, 911-917.
https://doi.org/10.1139/y59-099
[26]  Li, Y., Naghdi, F.G., Garg, S., Adarme-Vega, T.C., Thurecht, K.J., Ghafor, W.A., Tannock, S. and Schenk, M. (2014) A Comparative Study: The Impact of Different Lipid Extraction Methods on Current Microalgal Lipid Research. Microbial Cell Factories, 13, 14.
https://doi.org/10.1186/1475-2859-13-14
[27]  Freitas, L.S. (2007) Desenvolvimento de procedimentos de extracao do óleo de sementes de uva e caracterizacao química dos compostos extraídos. 227f. Tese (Doutorado em Química), Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre.
[28]  Viêgas, C.V. (2010) Extracao e caracterizacao dos lipídeos da microalga Chlorella pyrenoidosa visando à producao de ésteres graxos. Dissertacao para obtencao do título de mestre; Programa de pós-graduacao em química tecnológica e ambiental, FURG, Rio Grande, RS.
[29]  Zhu, F.F., Zhao, L.Y., Jiang, H.M., Zhang, Z.L., Xiong, Y.Q., Qi, J.J. and Wang, J.W. (2014) Comparison of the Lipid Content and Biodiesel Production from Municipal Sludge Using Three Extraction Methods. Energy Fuels, 28, 5277-5283.
https://doi.org/10.1021/ef500730c
[30]  Schmid-Bondzynski-Ratzlaff (2012) Extracao e quantificacao de lipídios em microalgas. Modificado pela Universidade Federal de Vicosa. Departamento de Tecnologia de Alimentos.
[31]  Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A. and Bux, F. (2011) Bioprospecting for Hyper-Lipid Producing Microalgal Strains for Sustainable Biofuel Production. Bioresource Technology, 102, 57-70.
https://doi.org/10.1016/j.biortech.2010.06.077
[32]  Ramos, M.J., Fernández, C.M., Casas, A., Rodríguez, L. and Pérez, á. (2009) Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties. Bioresource Technology, 100, 261-268.
https://doi.org/10.1016/j.biortech.2008.06.039
[33]  Yang, F.F., Cheng, C.H., Long, L.J., Hu, Q.J., Jia, Q.K., Wu, H.L. and Xiang, W.Z. (2015) Extracting Lipids from Several Species of Wet Microalgae Using Ethanol at Room Temperature. Energy Fuels, 29, 2380-2386.
https://doi.org/10.1021/ef5023576
[34]  Streit, N.M., Canterle, Hecktheuer, H., Helena, L., et al. (2005) As Clorofilas. Ciência Rural, 35, 748-755.
https://www.redalyc.org/articulo.oa?id=33135343 }
https://doi.org/10.1590/S0103-84782005000300043
[35]  Petkov, G., Ivanova, A., Iliev, I. and Vaseva, I. (2012) A Critical Look at the Microalgae Biodiesel. European Journal of Lipid Science and Technology, 114, 103-111.
https://doi.org/10.1002/ejlt.201100234
[36]  Breuer, G., Packo, L., Dirk, E.M., René, B.D. and René, H.W. (2012) The Impact of Nitrogen Starvation on the Dynamics of Triacylglycerol Accumulation in Nine Microalgae Strains. Bioresource Technology, 124, 217-226.
https://doi.org/10.1016/j.biortech.2012.08.003
[37]  Choe, E. and Min, D.B. (2006) Chemistry and Reactions of Reactive Oxygen Species in Foods. Journal of Food Science, 70, R142-R159.
https://doi.org/10.1111/j.1365-2621.2005.tb08329.x
[38]  Ryckebosch, E., Muylaert, K. and Foubert, I. (2012) Optimization of an Analytical Procedure for Extraction of Lipids from Microalgae. Journal of the American Oil Chemists’ Society, 89, 189-198.
https://doi.org/10.1007/s11746-011-1903-z
[39]  Chen, F., Liu, J., Huang, J., Sun, Z., Zhong, Y. and Jiang, Y. (2011) Differential Lipid and Fatty Acid Profiles of Photoautotrophic and Heterotrophic Chlorella zofingiensis: Assessment of Algal Oils for Biodiesel Production. Bioresource Technology, 102, 106-110.
https://doi.org/10.1016/j.biortech.2010.06.017
[40]  Chew, K.W., Yap, J.Y., Show, L., Suan, N.H., Juan, J.C., Ling, T.C. and Chang, J.-S. (2017) Microalgae Biorefinery: High Value Products Perspectives. Bioresource Technology, 229, 53-62.
https://doi.org/10.1016/j.biortech.2017.01.006
[41]  Feng, Z., Yang, K., Xu, Z.B., Wang, Z.M., Fan, L., Qin, L. and Zhu, S.N. (2014) Growth and Lipid Accumulation Characteristics of Scenedesmus obliquus in Semi-Continuous Cultivation Outdoors for Biodiesel Feedstock Production. Bioresource Technology, 173, 406-414.
https://doi.org/10.1016/j.biortech.2014.09.123
[42]  Krzemińska, I., Piasecka, A., Nosalewicz, A., Simionato, D. and Wawrzykowski, J. (2015) Alterations of the Lipid Content and Fatty Acid Profile of Chlorella protothecoides under Different Light Intensities. Bioresource Technology, 196, 72-77.
https://doi.org/10.1016/j.biortech.2015.07.043
[43]  Martins, R.C. and Silva, C.L.M. (2002) Modelling Colour and Chlorophyll Losses of Frozen Green Beans (Phaseolus vulgaris. L.) Haricots verts congelés: Modélisation de la diminution de l’intensité de la couleur et de la teneur en chlorophylle. International Journal of Refrigeration, 25, 966-974.
https://doi.org/10.1016/S0140-7007(01)00050-0
[44]  Vicente, S.J.V. and Torres, E.A.F.S. (2007) Formation of Four Oxidation Products and Loss of Free Lipids, Cholesterol and Water in Beef Hamburgers as a Function of Thermal Processing. Food Control, 18, 63-68.
https://doi.org/10.1016/j.foodcont.2005.08.009
[45]  Viêgas, C.V., Hachemi, I., Maki-Arvela, , Smeds, A., Aho, A., Freitas, S.P., Da Silva, G., Mesquita, C.; Carbonetti, G., Peurla, M., Paranko, J., Kumar, N., Aranda, D.A.G. and Murzin, D.Yu. (2015) Algal Products beyond Lipids: Comprehensive Characterization of Different Products in Direct Saponification of Green Alga Chlorella sp. Algal Research—Biomass Biofuels and Bioproducts JCR, 11, 156-164.
https://doi.org/10.1016/j.algal.2015.06.014
[46]  Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T. and Kondo, A. (2013) Bioethanol Production Using Carbohydrate-Rich Microalgae Biomass as Feedstock. Bioresource Technology, 135, 191-198.
https://doi.org/10.1016/j.biortech.2012.10.015
[47]  Lee, O.K., Leum, A.K., Seong, D.H., Lee, C.G., Jung, Y.T., Lee, J.W. and Lee, E.Y. (2013) Chemo-Enzymatic Saccharification and Bioethanol Fermentation of Lipid-Extracted Residual Biomass of the Microalga, Dunaliella tertiolecta. Bioresource Technology, 132, 197-201.
https://doi.org/10.1016/j.biortech.2013.01.007
[48]  Fabregas, J., Aran, J., Morales, E.D., Lamela, T. and Otero, A. (1997) Modification of Sterol Concentration in Marine Microalgae. Phytochemistry, 46, 1189-1191.
https://doi.org/10.1016/S0031-9422(97)80009-X
[49]  Francavilla, M., Trotta, and Luque, R. (2010) Phytosterols from Dunaliella tertiolecta and Dunaliella salina: A Potentially Novel Industrial Application. Bioresource Technology, 101, 4144-4150.
https://doi.org/10.1016/j.biortech.2009.12.139
[50]  Peeler, T.C., Stephenson, M.B., Einspahr, K.J. and Thompson Jr., G.A. (1989) Lipid Characterization of an Enriched Plasma Membrane Fraction of Dunaliella salina Grown in Media of Varying Salinity. Plant Physiology, 89, 970-976.
https://doi.org/10.1104/pp.89.3.970
[51]  Zelazny, A.M., Shaish, A. and Pick, U. (1995) Plasma-Membrane Sterols Are Essential for Sensing Osmotic Changes in the Halotolerant Alga Dunaliella. Plant Physiology, 109, 1395-1403.
https://doi.org/10.1104/pp.109.4.1395
[52]  Ponis, E., Parisi, G., Le Coz, J.R., Robert, R., Zittelli, G.C. and Tredici, M.R. (2006) Effect of the Culture System and Culture Technique on Biochemical Characteristics of Pavlova lutheri and Its Nutritional Value for Crassostrea gigas Larvae. Aquaculture Nutrition, 12, 322-329.
https://doi.org/10.1111/j.1365-2095.2006.00411.x
[53]  Piepho, M., Martin-Creuzburg, D. and Wacker, A. (2010) Simultaneous Effects of Light Intensity and Phosphorus Supply on the Sterol Content of Phytoplankton. PLoS ONE, 5, e15828.
https://doi.org/10.1371/journal.pone.0015828
[54]  Piepho, M., Martin-Creuzburg, D. and Wacker, A. (2012) Phytoplankton Sterol Contents Vary with Temperature, Phosphorus and Silicate Supply: A Study on Three Freshwater Species. European Journal of Phycology, 47, 138-145.
https://doi.org/10.1080/09670262.2012.665484
[55]  Xu, Z., Yan, X., Pei, L., Luo, Q. and Xu, J. (2008) Changes in Fatty Acids and Sterols during Batch Growth of Pavlova viridis in Photobioreactor. Journal of Applied Phycology, 20, 237-243.
https://doi.org/10.1007/s10811-007-9230-3
[56]  Ho, S.-H., Li, -J., Liu, C.-C. and Chang, J.-S. (2013) Bioprocess Development on Microalgae-Based CO2 Fixation and Bioethanol Production Using Scenedesmus obliquus CNW-N. Bioresource Technology, 145, 142-149.
https://doi.org/10.1016/j.biortech.2013.02.119
[57]  Ho, S.H., Chen, C.Y. and Chang, J.S. (2012) Effect of Light Intensity and Nitrogen Starvation on CO2 Fixation and Lipid/Carbohydrate Production of an Indigenous Microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244-252.
https://doi.org/10.1016/j.biortech.2011.11.133
[58]  Dujardin, E., Laszlo, and Sacks, D. (1975) The Chlorophylls. An Experiment in Bio-Inorganic Chemistry. Journal of Chemical Education, 52, 742.
https://doi.org/10.1021/ed052p742
[59]  Gunstone, F.D. (1984) Reaction of Oxygen and Unsaturated Fatty Acids. Journal of the American Oil Chemists’ Society, 61, 441-442.
https://doi.org/10.1007/BF02678811
[60]  Lee, O.K., Oh, Y.K. and Lee, E.Y. (2015). Bioethanol Production from Carbohydrate-Enriched Residual Biomass Obtained after Lipid Extraction of Chlorella sp. KR-1. Bioresource Technology, 196, 22-27.
https://doi.org/10.1016/j.biortech.2015.07.040
[61]  López, E.N., Medina, A.R., Antonio, Moreno, G. and Cerdán, L.E. (2016) Extraction of Microalgal Lipids and the Influence of Polar Lipids on Biodiesel Production by Lipase-Catalyzed Transesterification. Bioresource Technology, 216, 904-913.
https://doi.org/10.1016/j.biortech.2016.06.035

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133